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Abstract

This study investigates the impact of various dimensionality reduction techniques on classi-
fying cancer subtypes based on gene expression data. In particular, the popular technique
Principal Component Analysis (PCA) is compared to a Sparse version of PCA (SPCA)
and a gene-expression specific sparse version of PCA (G-SPCA), both proposed by Zou
et al. (2006). Data was obtained from four different sources, all concerning gene expression
data for different subtypes of cancer. Results show that the percentage explained variance
is positively related to the percentage of non-zero loadings for both SPCA and G-SPCA,
with G-SPCA explaining a bit more variance given a certain percentage of non-zero load-
ings. Performance of subsequent classification algorithms is best when using regular PCA,
winning or tying the classification accuracy for three out of four datasets. Runtime analy-
sis shows that G-SPCA and PCA are significantly faster than SPCA, which is found to be
exceptionally slow due to its increased computational complexity, making it not a viable
option when dealing with extremely high-dimensional data such as gene expression data.
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1 Introduction

1.1 Cancer

Cancer is a leading cause of death worldwide, as stated by the World Health Organization
(WHO). In 2020, almost 10 million people died from cancer, representing about one out of six
deaths globally. The disease is caused by abnormal growth and division of cells in the body.
These cells can spread to other parts of the body through the blood and lymph systems,
forming tumours. Cancer can affect any part of the body, including the organs, bones, and
skin.

There are many different types of cancer, each with its own set of symptoms, causes, and
treatments. The most common types of cancer are lung, colorectal, stomach, liver, and breast
cancer (WHO). The number of deaths varies by region and country, with higher rates in low-
and middle-income countries. The amount of cancer cases worldwide is expected to continue
to rise as the global population ages and cancer risk factors become more prevalent, such as
tobacco use and obesity (Torre et al., 2016).

Advances in cancer research have led to improved treatments and therapies, such as
chemotherapy, radiation therapy, and surgery. New developments in immunotherapy and
targeted therapy also show promising results (Debela et al., 2021). However, for all cancer
types, it holds that early detection and diagnosis are crucial for successful treatment and sur-
vival rates (Blandin Knight et al., 2017). Analysing gene expression data is one of the ways to
more accurately classify the kind of cancer in a patient and increase the chances of successful,
timely treatment.

1.2 Gene expression data

Gene expression data can be used to classify different types of cancer and to understand the
underlying molecular mechanisms of the disease. The process of gene expression involves the
transcription of genetic information from DNA to RNA, and the subsequent translation of
RNA into proteins. By measuring the levels of gene expression in cancerous tissue, researchers
can identify patterns of altered gene activity that are associated with specific types of tumours.

Various methods for measuring gene expression exist, each with its own advantages and
disadvantages. The choice of method depends on the specific research question and the type of
sample being analysed. Examples of methods include microarrays, RNA-sequencing, real-time
PCR and proteomics, which are left to the interested reader to explore further.

One way gene expression data is used in cancer classification is through the identification
of biomarkers, which are genes or proteins that are expressed differently in cancerous tissue
compared to normal tissue (Aguirre-Gamboa et al., 2013). These biomarkers can be used
to distinguish between different types of cancer, and to classify the stage of the disease. For
example, a specific pattern of gene expression in a breast cancer sample might indicate that the
cancer is of a certain subtype and has higher likelihood of spreading (Lehmann & Pietenpol,
2014).

Another way gene expression data is used in cancer classification is through the use of
machine learning algorithms, which can analyse large amounts of gene expression data and
identify patterns that are not visible to the human eye (Chen et al., 2016; Yuan et al., 2020).
These algorithms can be trained to classify cancer samples based on their gene expression
profiles, and can help to identify new subtypes of cancer.

One problem concerning the analysis of gene expression data is the problem of high-
dimensionality. Due to the high number of genes and the (often) small number of samples in a
cancer study, traditional algorithmic and statistical methods are often not valid or infeasible.
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Several dimensionality reduction techniques are often applied to alleviate these issues, which
will be the focus of this paper.

1.3 Dimensionality reduction

High dimensionality in gene expression data refers to the large number of genes that are mea-
sured in a single experiment. This can lead to a number of problems when fitting models,
including but not limited to the curse of dimensionality, overfitting, and increased computa-
tional complexity (Van Der Maaten et al., 2009).

Dimensionality reduction or shrinking is a technique used to simplify high-dimensional
data, such as gene expression data, by reducing the number of variables while retaining as
much of the important information as possible. The goal of dimensionality reduction is to
identify the most informative features in the data and to represent them in a lower-dimensional
space. In the context of gene expression data, dimensionality reduction can be used to identify
the genes that are most strongly associated with a particular disease or condition, such as in
this case cancer. This can make the data easier to visualize and analyse, and can also improve
the performance of machine learning algorithms.

There are several methods for dimensionality reduction. In this paper, we will focus on
Principal Component Analysis (PCA) and its extension, Sparse Principal Component Analysis
(SPCA). SPCA attempts to identify a sparse set of principal components that accounts for the
majority of the variance within the data, while simultaneously maximizing the number of zero
loadings in the identified components. This is done by solving an elastic net. Additionally,
we explore a sparse PCA algorithm specifically tailored to gene expression data, namely G-
SPCA, as proposed by Zou et al. (2006). G-SPCA has the same goal as SPCA, but instead of
solving an elastic net takes an alternative soft-thresholding approach, making it more suitable
for situations where the number of features, genes in this case, is many times larger than the
number of samples. More detailed theoretical and mathematical explanation on these methods
will be given in chapter 3.

1.4 Research question and hypothesis

The research questions for this paper can be formulated as follows:

How do different (Sparse) Principal Component Analysis variants affect the performance and
explainability of classification models on gene expression data?

Zou et al. (2006) report on the relation between non-zero loadings and percentage of explained
variance. Both SPCA and simple thresholding applied to PCA attain similar performance.
Simple thresholding implies a threshold is set a priori and loadings smaller than this threshold
are set to zero. Based on these findings, transforming the data using SPCA is not expected
to improve classification results compared to PCA. However, we deem the interaction between
SPCA and the classification algorithms worth investigating, since Zou et al. (2006) note that
SPCA and PCA do in fact yield different non-zero loadings and different feature sets. Further-
more, SPCA can aid in the explainability of the importance of different features, thus finding
even comparable performance to PCA might be indicative of a preferable case for SPCA.

Following, in Section 2 the data for the experiment is presented. After this, in Section
3 the methodology is given in which the relevant methods are described in more theoretical
and methematical detail, and the experimental setup is outlined. In Section 4 the results are
presented and discussed. Lastly in Section 5, the conclusion and discussion are presented.
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2 Data

2.1 Overview

For this paper, four gene expression datasets were used. Below, an overview of the different
datasets is given, together with a short summary of each paper associated with the dataset
used.

Table 1: Descriptive statistics for each dataset

Author Cancer type Samples Features Classes Class distribution (%)
Khan et al. (2001) SRBCT 63 2,308 4 12.7, 36.5, 19.0, 31.7
Alon et al. (1999) Colon 62 2,000 2 35.5, 64.5
Gravier et al. (2010) Breast 168 2,905 2 66.1, 33.9
Sørlie et al. (2001) Breast 85 456 5 16.5, 12.9, 15.3, 17.6, 37.6

2.2 Paper summaries

Khan et al. (2001) investigated the use of gene expression profiling and artificial neural net-
works (ANNs) for the classification and prediction of different types of "small, round, blue cell
tumors" (SRBCTs). They found that ANNs can accurately classify different subtypes of cancer
based on gene expression data and can also accurately predict the diagnosis of new patients.
The results suggest that ANNs could be a valuable tool for the diagnosis and classification of
cancer. The data used in this study is a subset of the data in the original study.

Alon et al. (1999) explored the gene expression patterns in normal and tumor colon tissues.
The study used clustering analysis to identify broad patterns of gene expression in the different
tissues. The results showed that the gene expression patterns in tumor colon tissues were
distinct from those in normal colon tissues and that the gene expression profiles could be used
to differentiate between the two. The results suggest that gene expression profiles could be a
valuable tool for understanding the biology of colon tumors and for developing new diagnostic
approaches for colon cancer.

Gravier et al. (2010) investigated the development of a DNA signature to predict the
prognosis of small (so-called T1T2) node-negative breast cancer patients. The study used
DNA microarray analysis to profile gene expression in breast tumors and identify a set of
genes that were associated with patient outcome. The results showed that a subset of 7 genes
was able to accurately predict the likelihood of distant metastasis in small node-negative
breast cancer patients. The results suggest that these 7 genes can be used as a focus tool for
individualized treatment decision-making and for improving patient outcomes.

Sørlie et al. (2001) analyze gene expression patterns in breast carcinomas to identify can-
cer subclasses and their clinical characteristics. The study used DNA microarray analysis to
analyze tumors from a large group of patients and found two distinct subclasses of breast
carcinomas based on gene expression. The results showed that these subclasses were associ-
ated with different clinical outcomes and could be used to predict the prognosis of individual
patients. The study concluded that the gene expression patterns could provide important in-
formation for the diagnosis and treatment of breast cancer, and could lead to the development
of new therapeutic strategies that are tailored to the specific subclasses of the disease.
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3 Methodology

3.1 Dimensionality reduction

3.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used statistical technique for the dimen-
sionality reduction of large, complex datasets. It was first proposed by mathematician Karl
Pearson (1901) and later further developed by Hotelling (1933). PCA is a versatile technique
that can also be used for applications such as data visualization, feature extraction, noise
reduction, and denoising of data.

The objective of PCA is to identify the underlying structure of the data by identifying
the directions (components) in the data that explain the most variance. This is achieved
by projecting the data onto a new set of axes, referred to as principal components. The first
principal component corresponds to the direction in the data that explains the greatest amount
of variance, while subsequent components correspond to directions that explain decreasing
amounts of variance. See Figure 1 for a simple example.
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Figure 1: Visualization of breakdown of data into 2 principal components.

The implementation of PCA involves several steps. Firstly, the data must be standardized
to ensure that all variables are on the same scale. This is a critical assumption of PCA. Let
X̃ ∈ Rn×p be the matrix containing data on p features, consisting of n observations. Then
construct the standardized data matrix X ∈ Rn×p, by transforming each feature xi ∈ Rn with
i ∈ {1, . . . , p} using the following operation:

xi =
x̃i − µ̂x̃i

σ̂x̃i

, (1)

with µ̂ and σ̂ denoting the sample mean and standard deviation respectively. Applying stan-
dardization ensures that the mean of each xi is equal to zero, with a standard deviation of
one.

Then, the covariance matrix C ∈ Rp×p is given by C = 1
n−1X

TX. C is a symmetric matrix
and can be diagonalized as follows:

C = V LV T (2)

where V is the matrix containing the eigenvectors, and L is a matrix containing the eigenvalues
λi in decreasing on the diagonal. The eigenvectors vi are the principal axes, not to be confused
with the principal components. The principal components themselves are the projections of
the standardized data on the principal axes. The k principal components are given by the first
k columns of XV .
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However, PCA can also be performed by using singular value decomposition (SVD) on the
standardized data matrix X:

X̃ = USV T , (3)

where U ∈ Rn×n is a unitary matrix and S ∈ Rn×p is a diagonal matrix containing the singular
values si. From this, we can conclude that

C =
1

n− 1
V SUTUSV T = V

S2

n− 1
V T (4)

which means that singular vectors V are the principal axes and the singular values are related
to the eigenvalues of the covariance matrix C as λi = s2i /(n − 1). The principal components
are given by XV = USV TV = US. The sample variance of the ith principal component is
equal to s2ii/n.

The output of PCA is the set of principal components, which are linear combinations
of the original features, and are orthogonal to each other. One drawback of PCA is that
each principal component is a linear combination of all p variables, which makes intuitive
interpretation difficult. By pushing factor loadings to zero, the Sparse PCA method tries to
explain most of the variance in the data while increasing interpretability.

3.1.2 Sparse Principal Component Analysis

Sparse Principal Component Analysis (SPCA) is a method that modifies the traditional Prin-
cipal Component Analysis (PCA) by incorporating sparsity into the identification of principal
components. SPCA attempts to identify a sparse set of principal components that can effec-
tively account for the majority of the variance within the data, while simultaneously maximiz-
ing the number of zero loadings in the identified components. The goal of SPCA is to extract
the most informative and relevant features from the data while reducing the dimensionality of
the data and improving the interpretability of the results.

One of the main advantages of SPCA is that it can be used to identify a small set of im-
portant variables that are most strongly associated with the principal components, as opposed
to being a linear combination of all variables as in PCA. This can be particularly useful in
gene expression data, as SPCA can be used to identify a small set of genes that are most
strongly associated with the concerning disease or condition. This sparse set of genes can
subsequently be used for further analysis. Similarly, SPCA can be used to handle other forms
of high-dimensional data, which are common in many real-world applications such as text data
analysis (Zhang & Ghaoui, 2011).

There are multiple mathematical formulations of Sparse Principal Component Analysis
(SPCA) each with its own advantages and disadvantages. We implement the SPCA algorithm
as described in Zou et al., 2006:

1. Let A start at V [:, 1 : k], the first k loadings of the ordinary principal components

2. Given A = [α1, . . . , αk], solve the following elastic net problem for j = 1, . . . , k

βj = argmin
β

(αj − βj)
T (XTX)(αj − β) + λ

∥∥βj∥∥2 + λ1,j

∥∥βj∥∥1
3. given B = [β1, . . . , β2] compute XTXB = UDV T using SVD, then update A = UV T

4. repeat 2, 3 until convergence.

5. Normalize and return loadings V̂j =
βj

∥βj∥

Jacco Broere, Caspar Hentenaar, Bas Willemsen page 7 of 18



Report
Case Study: Econometrics and Data Science

To solve the elastic net problem, we utilize the solver as implemented by scikit-learn (Pe-
dregosa et al., 2011). Zou et al. (2006) note that the computational complexity of the elastic
net regression is O(p3). Naturally, this SPCA method might be unfit when dealing with gene
expression data, where p ≫ n is commonplace.

3.1.3 Sparse Principal Component Analysis for gene expression data

Sparse Principal Component Analysis for gene expression data (G-SPCA) is a modification
of the SPCA procedure described in section 3.1.2, tailored specifically for data where the
number of features is many times larger than the number of samples, as is often the case in
gene expression data. Due to the high dimensionality of gene expression data, the Elastic Net
problem in step 2. of section 3.1.2 can become infeasible due to the cubic time complexity.
To circumvent this issue, Zou et al., 2006 propose an alternative soft-thresholding approach,
by restricting the objective function in step 2. of the algorithm in section 3.1.2 as follows, for
j ∈ {1, . . . , k}:

β̂j = argmin
βj

−2αT
j (X

TX)βj +
∥∥βj∥∥2 + λ1,j

∥∥βj∥∥1,
we are able to obtain an explicit solution given αj , namely

βj =

(
|αT

j X
TX| − λ1,j

2

)
+

Sign(αT
j X

TX). (5)

The complexity of calculating XTXβ is O(p2) for regular matrix multiplications. Note that we
treat XTX as given, as this matrix is constant for each iteration of the algorithm and therefore
needs to be calculated only once during initialization. Clearly, a computational complexity
of O(p2) (for G-SPCA) instead of O(p3) (for SPCA) for each iteration of the algorithm can
be substantial when p ≫ n, which is usually the case for gene expression data. However,
the work of Zou et al., 2006 does not provide any guarantees for the number of iterations
of the algorithm when utilizing this soft-thresholding SPCA. The efficiency of not conducting
an elastic net regression is evaluated through runtime analysis to determine if the theoretical
improvement in performance translates to a tangible improvement for practical applications.

Below, the soft threshold as utilized in equation (5) is visualized, alongside the hard-
threshold counterpart.
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Figure 2: Soft and hard thresholding with threshold λ = 1
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3.2 Classification algorithms

3.2.1 Logistic Principal Component Regression

Logistic Principal Component Regression (LPCR) is a variation of Principal Component Re-
gression (PCR) that is used for categorical classification problems. As the name suggests, it
combines the use of Principal Component Analysis (PCA) and Logistic Regression (LR) to
build a predictive model. LPCR uses the principal components obtained from PCA as pre-
dictors in a logistic regression model, rather than using the original variables. This can help
to reduce the problems of multicollinearity and overfitting that can occur in traditional logis-
tic regression with high-dimensional datasets (Wold et al., 1984). LPCR can logically also be
adapted to Logistic Sparse Principal Component Regression (LSPCR) or Logistic Gene-Sparse
Principal Component Regression (LGSPCR) by using the components resulting from Sparse
PCA or the soft-thresholding G-SPCA respectively as opposed to using the components from
regular PCA.

The objective function for Logistic Regression for multi-class classification with K classes,
s.t. yi ∈ {1, . . . ,K}, can be formalized as (Anderson & Blair, 1982):

Ŵ = argmin
W

−C
n∑

i=1

K−1∑
j=0

I(yi = j) log

(
eXiWj∑K−1

l=0 eXiWl

)
+

1− ρ

2
∥W∥2F + ρ∥W∥1 (6)

with W denoting the coefficient matrix, where each row Wk corresponds to class k. The hyper-
parameter ρ ∈ [0, 1] controls the ratio between l1- and l2-regularization and C ∈ R>0 controls
the general severity of regularization, where smaller values of C correspond to less regulariza-
tion. The resulting Ŵ matrix can then be used to predict probabilities of a new observation
belonging to a particular class, the class with the maximum corresponding probability is then
yielded as the prediction. The estimated probabilities for each class can be constructed as
follows:

p̂k(Xi) =
eXiŴj∑K−1

l=0 eXiŴl

(7)

3.2.2 Gradient Tree Boosting

Gradient Tree Boosting algorithms are a popular and powerful machine learning technique
used for solving regression and classification problems. These algorithms build a model by
combining multiple decision trees sequentially, where each tree aims to correct the mistakes
made by the previous tree (Friedman, 2002). The trees are grown using the gradient of the loss
function, explaining the nomenclature Gradient Tree Boosting. The final prediction is made
by combining the predictions from all the trees using a weighted sum.

One of the most popular Gradient Tree Boosting algorithms is LightGBM. Developed
by Ke et al. (2017), LightGBM offers several advantages over other tree boosting algorithms.
Firstly, it uses a novel tree building algorithm called histogram-based tree building or Exclusive
Feature Bundling (EFB). This technique divides continuous feature values into discrete bins
and uses these bins to construct decision trees, resulting in faster training times as compared
to traditional tree building algorithms which are based on sorting the feature values.

Secondly, LightGBM uses a gradient-based one-side sampling technique, which samples
only the positive instances or negative instances with a higher probability. This results in faster
convergence and improved accuracy. These improvements make LightGBM a highly efficient
and scalable tree boosting algorithm that offers significant benefits over other algorithms.
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3.2.3 Hyperparameter tuning

To optimize the performance of the classification models discussed in section 3.2.1 and 3.2.2,
we employ Optuna, an open-source hyperparameter optimization framework (Akiba et al.,
2019). Optuna addresses the limitations of traditional hyperparameter optimization methods
by utilizing dynamically constructed parameter spaces. Furthermore, Optuna improves effi-
ciency through efficient sampling and pruning mechanisms. Our implementation of Optuna
uses the Tree-structured Parzen Estimator (TPE), which estimates two Gaussian Mixture
Models (GMM) (Bergstra et al., 2011). Specifically, one Gaussian Mixture Model is fit to
the parameters that result in the best evaluation score, which in this case is the classification
accuracy over 3-fold cross validation within the training set (67% of the dataset). The other
Gaussian Mixture Model is fit to the remaining parameters that are yet to be tried. Lastly,
Optuna employs Asynchronous Successive Halving (ASHA) for efficient pruning, resulting in
more cost-effective hyperparameter optimization (Li et al., 2018).

Table 2 presents the hyperparameter search spaces for both Logistic Regression (LR) and
LightGBM (LGBM). Optuna uses this parameter space to sample hyperparameter settings
iteratively for 50 iterations, using the procedure described above.

Table 2: Hyperparameter space for LR and LGBM

Hyperparameter LR LGBM
l1-ratio [0, 1] -
C [0.01, 1] -
Number of trees - 100
Learning rate - 0.1
Number of leaves - N ∩ [15, 100]

Maximum depth - N ∩ [3, 20]

Minimum samples in child node - N ∩ [2, 5]

Note: Learning rate and Number of trees are not optimized but
set as a fixed value manually

3.3 Experiment outline

The experiments in this paper are outlined to accommodate a comparison of sparse formu-
lations of Principal Component Analysis, with an application on gene expression datasets
concerning cancer subtypes. Firstly, we perform experiments to compare the methods dis-
cussed in section 3.1.2 and 3.1.3 directly. Secondly, we make a comparison of these methods
by using their output as a data preprocessing step for a classification algorithm which tries
to predict the relevant cancer subtype in each of the datasets. To replicate relevant practical
applications in which these methods can be used. Below, each of the necessary steps is outlined
in more detail.

3.3.1 Preprocessing

First, all datasets are transformed into a suitable tabular format. This process consists of
renaming the column names, transposing the dataset if necessary, dropping incomplete or du-
plicate observations and features, and adding the targets variables, specifically cancer subtypes
in this application. Standardizing the data is necessary for all three formulations of PCA, as
explained in section 3.1.1.
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3.3.2 PCA, SPCA and G-SPCA

We apply the regular Principal Components Analysis (PCA), Sparse Principal Components
Analysis (SPCA) and the soft-thresholding Gene-Sparse Principal Component Analysis (G-
SPCA) as described in 3.1.3. For all three methods, the first 15 components are used. More-
over, for both SPCA variants, regularization parameters are set such that the methods yield a
roughly equal amount of non-zero loadings to allow for fair comparison. PCA functions were
implemented from the scikit-learn library in Python (Pedregosa et al., 2011). We implemented
SPCA and G-SPCA ourselves, as the implementations available from existing libraries were ei-
ther missing or insufficient for our experiments. The algorithms are implemented as described
in section 3.1.

3.3.3 Classification

The three sets of principal components resulting from PCA, SPCA, and G-SPCA are utilized as
features in the two classification algorithms, Logistic Regression (LR) and LightGBM (LGBM).
The predictive performance of the classification algorithms, when trained on the three sets of
principal components, are analysed and compared. Given the imbalanced nature of the two
binary datasets, the macro F1-score is employed as the performance metric, as it assigns equal
weight to both classes. In addition, the accuracy is reported because of ease of interpretability.

3.4 Evaluation

The evaluation of the proposed data transformations will be threefold, namely by the percent-
age of explained variance (PEV), the total runtime of each of the dimensionality reduction
methods, and performance of the classification methods using the different principal compo-
nent sets.

3.4.1 Classification performance

While Sparse PCA methods increase the interpretability of dimensionality reduction, we are
also interested in how the performance of classification algorithms are affected by the different
sets of principal components. As mentioned in Section 3.2.3, hyperparameter tuning for both
classification models was done using Optuna to find the optimal hyperparameters, as in real
world applications one would do. For both classification methods described in Section 3.2, the
accuracy score and the macro-averaged F1-score is presented per dataset, given the different
dimensionality reduction component results.

3.4.2 Percentage Explained Variance

A popular statistic to judge the performance of dimensionality reduction techniques is the
percentage explained variance (PEV). Zou et al. (2006) provide the PEV of the first (sparse)
principal component versus the amount of non-zero loadings. They use a method based on the
QR decomposition to compute the variance captured by SPCA. Camacho et al. (2020) show
that this method is generally incorrect, as the total variance calculated this way usually does
not coincide with the actual total variance. Instead, we calculate PEV as in Guerra-Urzola
et al. (2021):

PEV = 1− ∥X̂ −X∥2F
∥X∥2F
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Where X̂ denotes the recovered dataset obtained by multiplying the transformed dataset
with the transposed loadings and ∥·∥F denotes the Frobenius norm. This way, the PEV
measure captures the explained variance across all components in comparison to the entire
dataset, instead of the leading PC in comparison to all components. For our methods, we
are interested in the PEV compared to the number of non-zero loadings. By varying the
regularization parameters in SPCA and G-SPCA, the amount of non-zero loadings can be
chosen, which should have a negative relationship to the PEV. In the results for each dataset,
for each dimensionality reduction method, the percentage of explained variance is plotted
versus the percentage of non-zero loadings.

3.4.3 Runtime analysis

Lastly, we provide the runtime of each dimensionality reduction method. In order to make fair
comparisons, we ensure that for each dataset the regularization parameter is set such that the
percentage of zero loadings is equal up to a 2% difference between SPCA and G-SPCA. To
achieve this α is set to 0.01 for SPCA and a bisection search over λ1 is performed for G-SPCA
to find the corresponding value. The runtimes are evaluated using k = 5 components and for
each dataset, transformation combination the dimensionality reduction is performed 3 times.
In the Results section, runtime tables can be found for the different combinations.

4 Results

4.1 Classification performance

In Table 3 and 4 the accuracy scores and macro-averaged F1-scores can be seen for all different
combinations of dataset, dimensionality reduction method and classification model. PCA wins
or ties for best performance in terms of accuracy and F1-score on three out of the four datasets.
G-SPCA wins or ties two times in terms of accuracy and once in terms of F1-score. SPCA
ties once for both accuracy and F1-score on the dataset from Sørlie et al. (2001).

As for comparing the different classification models per dimensionality reduction method,
it can be seen that Logistic Regression (LR) outperforms LightGBM (LGBM) on three out of
four datasets for PCA and SPCA. Utilizing G-SPCA components, LGBM outperforms LR on
all 4 datasets.

Table 3: Accuracy score for LR and LGBM

PCA SPCA G-SPCA
LGBM LR LGBM LR LGBM LR

Sørlie et al. (2001) 0.79 0.86 0.72 0.86 0.83 0.79
Khan et al. (2001) 0.86 1.00 0.90 0.95 0.81 0.71
Alon et al. (1999) 0.71 0.86 0.86 0.86 0.90 0.67
Gravier et al. (2010) 0.73 0.71 0.64 0.71 0.73 0.71
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Table 4: Macro-averaged F1-score for LR and LGBM

PCA SPCA G-SPCA
LGBM LR LGBM LR LGBM LR

Sørlie et al. (2001) 0.79 0.86 0.72 0.86 0.81 0.74
Khan et al. (2001) 0.81 1.00 0.84 0.97 0.88 0.78
Alon et al. (1999) 0.68 0.85 0.84 0.85 0.89 0.40
Gravier et al. (2010) 0.65 0.58 0.60 0.58 0.61 0.58

4.2 Percentage Explained Variance

In Figure 3 the percentage explained variance for the four datasets can be seen for different
percentages of non-zero loadings, for both SPCA and G-SPCA. SPCA is prone to numerical
issues when using low regularization, therefore there are no observations between 50 and 100%
of the non-zero loadings. SPCA usually achieves a slightly lower PEV in comparison to G-
SPCA.

In figure 4 the PEV is plotted against the percentage of genes with non-zero loadings. A
gene disappears from the set of principal components when the loadings for that gene are set
to zero for all principal components. This is the case when an entire row in the loadings matrix
is set to 0. Comparably to PEV vs percentage of non-zero loadings, SPCA generally attains a
slightly lower percentage of explained variance for the same percentage of genes with non-zero
loadings.
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(a) Alon et al. (1999) dataset
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(b) Gravier et al. (2010) dataset
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(c) Khan et al. (2001) dataset
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(d) Sørlie et al. (2001) dataset

Figure 3: Percentage of non-zero loadings vs the percentage of explained variance
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Figure 4: Percentage of genes with complete zero loadings vs the percentage of explained variance

4.3 Runtime analysis

Table 5: Runtime analysis of fitting transformation

PCA SPCA G-SPCA
Khan et al. (2001) t̄ 0.10 113.81 0.60

σt 0.01 0.31 0.03
Alon et al. (1999) t̄ 0.05 652.77 0.08

σt 0.02 0.68 0.01
Gravier et al. (2010) t̄ 0.08 119.07 1.98

σt 0.06 0.21 0.11
Sørlie et al. (2001) t̄ 0.04 54.40 0.05

σt 0.04 0.44 0.02

Table 6: Student’s t-test between runtime PCA and G-SPCA

t-statistic p-value
Khan et al. (2001) -21.08 0.00
Alon et al. (1999) -42.20 0.00
Gravier et al. (2010) -38.50 0.00
Sørlie et al. (2001) -6.18 0.00

In Table 5 the runtimes for the different dimensionality reduction methods are displayed,
and Table 6 presents the results from the significance tests between PCA and G-SPCA are
shown. For all datasets, G-SPCA and PCA compute faster than SPCA. Furthermore, PCA is
significantly faster than G-SPCA at a 1% confidence level for all datasets.
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5 Conclusion & Discussion

5.1 Runtimes

Results show that fitting PCA is significantly faster than G-SPCA on all datasets. This is
expected as the first step of performing G-SPCA is performing PCA. Clearly, SPCA runtimes
are significantly longer than for both PCA and G-SPCA. This is due to its increased compu-
tational complexity stemming from the elastic net algorithm, making it not a viable option
when dealing with extremely high-dimensional data such as gene-expression data.

5.2 Explained variance

The results demonstrate that the SPCA generally produced a lower PEV in comparison to the
G-SPCA. This aligns with the findings of Zou et al. (2006), who established a consistently lower
PEV of 2.5% for SPCA when compared to the simple-thresholded Sparse Principal Component
Analysis.

The implementation of SPCA in this study utilized the sklearn elastic net solver (Pedregosa
et al., 2011). In order to obtain a percentage of non-zero loadings exceeding 40%, it was
necessary to use very low values of regularization, resulting in α ≤ 0.0001, λ ≤ 0.0000045 and
λ1 ≤ 0.00001. However, the documentation of sklearn mentions that α should not be equal
to 0 for numerical stability reasons. It seems that very low values of alpha should also be
avoided, as the numerical stability of the elastic net regression was compromised for such low
values of α.

One of the reasons to perform SPCA is because it might make complex machine learning
models more explainable as a subset of the data is used. However, from the PEV plots,
we find that the SPCA algorithm as implemented from the description of (Zou et al., 2006)
does not provide a much more explainable model. Although SPCA shrinks loadings to zero,
very high regularization is needed to set a row of loadings to 0, eliminating a feature from
the principal components. Therefore, added explainability is only achieved when using very
strong regularization.

5.3 Classification performance

No clear winner emerged between SPCA and G-SPCA in terms of classification performance.
PCA however did outperform or tie with SPCA or G-SPCA on 3 out of 4 datasets. LR
outperforms LGBM on three out of four datasets when transforming the data with PCA or
SPCA. When the data is transformed with G-SPCA, LGBM outperforms LR on all datasets
for both metrics. Classification performance might have proven more insightful when ran on
more datasets. Out of 22 similar datasets, only these four were feasible as they had no more
than 2900 features. Furthermore, although results seemed to vary with varying regularization
and l1-ratio during early testing, a search over these parameters proved infeasible. Although
an accuracy of around 90% was achieved for three of the four datasets and roughly 70% for
the data from Gravier et al. (2010), results proved very sensitive to hyperparameter changes
as sample sizes were limited.

5.4 Concluding remarks

The objective of this research was to examine the effects of various (Sparse) Principal Compo-
nent Analysis methods on the performance and interpretability of classification models when
applied to gene expression data. The findings indicate that there is little differentiation in
terms of classification performance among the SPCA variants. Furthermore, the use of SPCA
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does not significantly enhance the interpretability of the results compared to G-SPCA, which
often achieves a higher proportion of explained variance with a similar level of regularization.
Additionally, SPCA is significantly slower in runtime compared to G-SPCA and PCA, thereby
presenting challenges in hyperparameter optimization processes. Ultimately, when prioritizing
classification performance and dimension reduction, PCA is recommended, while G-SPCA is
favoured over SPCA when sparse loadings are necessary due to its faster runtime.

5.5 Future research

In this research we were limited to datasets with a maximum of around 2900 features due
to limited computational power. It would be interesting to compare results performing the
methods on datasets with a larger number of features. Additionally, it would be interesting
to measure performance of alternative dimensionality reduction methods on gene expression
data. For example, Xiang et al. (2021) suggest that t-distributed stochastic neighbour em-
bedding (t-SNE) and uniform manifold approximation and projection (UMAP) might also
be suitable dimensionality reduction methods for gene expression data, performing well in
accuracy, computational cost and stability.
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