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Abstract

The cryptocurrency market has rapidly grown in recent times, presenting an interesting

opportunity for algorithmic trading. This study examines the profitability of algorithmic

trading strategies devised through machine learning and combines them into an Ensemble

Voting strategy. The models are tested and validated over two subsets of data during 2017-

2018 and 2020-2021 with 5-, 15-, and 30-minute data frequencies. For each frequency, the

most important features are selected through an iterative procedure called Boruta. The

performance of these trading strategies is measured against a Buy-and-Hold strategy to

find whether algorithmic strategies can beat the market when considering 0.1% transaction

costs and when neglecting them. Our analysis shows that while the strategies can generate

high returns without transaction fees, they cannot be shown to produce significantly higher

returns than the Buy-and-Hold strategy when transaction costs are imposed.
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1 Introduction

Cryptocurrencies find their roots in 2008 when a pseudonymous developer Satoshi Nakamoto de-

scribes the first cryptocurrency in the original Bitcoin whitepaper (Nakamoto, 2019). Nakamoto

proposed a distributed digital ledger, based on technology that is now often referred to as a

blockchain. A blockchain is a decentralized network based on cryptographic protocols, enabling

cryptocurrencies to be used and trusted as a payment system without the need for a central

authority. Bitcoin and many modern cryptocurrencies are built around the core technology

of blockchain, often using modifications and extensions (Yaga et al., 2018). For instance, a

decrease in block time is a modification that is often seen in newer cryptocurrencies, resulting

in faster transaction speeds compared to Bitcoin, which is frequently regarded as slow.

Cryptocurrencies were initially introduced to solve problems that were inherent to traditional

fiat currencies, such as the need for a central authority. However, investors and economists of-

ten regard cryptocurrencies more as interesting investment assets, due to their speculative and

volatile nature (Yermack, 2015). These considerations helped cryptocurrencies gain traction

among investors and academics alike, reflected by the rapid growth of the market in cryptocur-

rencies, e.g., the price of Bitcoin recently surpassed the $50.000 barrier (La Roche, 2021).

Although the advent of machine learning technology has provided promising opportuni-

ties for trading strategies such as High-Frequency Trading (HFT), research on these strate-

gies is mostly being conducted in conventional financial markets. Cryptocurrencies present

an interesting parallel to the financial market, moreover, modern technology makes HFT for

cryptocurrencies accessible through freely available exchange APIs, e.g., Binance and Bitfinex.

Nonetheless, similar literature on the prediction of cryptocurrency prices at high frequency is

much more sparse. Fang et al. (2020) found that 85% of research on cryptocurrency price

prediction emerged since 2018, indicating that this is still a novel field. They categorized this

research into six distinct aspects of cryptocurrency trading, one of which is at focus in this

study: the emergent trading strategies using machine learning.

The strategies in HFT revolve around numerical algorithms to predict price movements.

These algorithms exploit computing power to make split-second trading decisions, far quicker

than humans would ever be able to, driving the increase in their popularity. JP Morgan esti-

mated that during peak levels of HFT in 2009, algorithms performed 61% of trading on the US

equity market (Cheng, 2017). Moreover, an influx of media attention is directed at the success

of HFT strategies during periods of market turmoil (Wigglesworth, 2019). This sparked debate
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about whether the widespread use of HFT strategies is healthy for the financial markets on

which they are working. Critics express their concern by arguing that HFT increases volatility

and systemic risk (Biais, Woolley, et al., 2011). On the other hand, supporters argue that it

increases market liquidity and helps price discovery (Brogaard et al., 2014).

Most research on cryptocurrency price prediction is conducted using low-frequency time

horizons, such as a daily frequency. Instead, this study aims to contribute to the understudied

field of HFT strategies for cryptocurrencies, by using sets of high-frequency data to create

distinct algorithmic trading strategies and a combination of them in the form of an Ensemble

Voting (EV) strategy (Dietterich, 2000). The raw minute-level price data is freely obtained using

the API from the cryptocurrency exchange Bitfinex. This study considers data from recent and

earlier time periods, to determine whether results obtained in foregoing years continue to hold

using recent data, now that the cryptocurrency market has evolved in many ways. The final

trading strategies are compared to a Buy-and-Hold (B&H) strategy on a set of evaluation

metrics and their profitability. Unlike similar research, this study tries to resemble a legitimate

trading environment by considering realistic transaction costs. The main objective of this study

is to determine whether an EV classifier can make high-frequency price movement predictions

on cryptocurrencies accurately enough to result in a trading strategy that can outperform a

B&H strategy in the current market.

The remainder of this study is as follows. The Theoretical Framework begins by review-

ing academic literature on the cryptocurrency market and its characteristics, then it focuses

primarily on the current research in the field of HFT for cryptocurrencies. The Methodology

describes the data set and establishes the statistical framework used throughout this study.

The Results section presents the optimized models and relates their performance against the

benchmark strategy. In the Conclusion, the implications and shortcomings of the findings are

discussed alongside further research interests.

2 Theoretical Framework

2.1 Cryptocurrency characteristics

2.1.1 Functionality as a currency

Cryptocurrencies were introduced to address the shortcomings of regular fiat currencies by

creating a decentralized, unregulated form of payment. Yermack (2015) explained how Bitcoin

exploits cryptography to create a deterministic supply with a regulated growth rate that is
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guarded through mathematical principles. In this manner, no government or any other authority

can alter the predetermined supply of Bitcoin, preventing inflation induced by monetary policy

from governments in financial difficulty.

Dwyer (2015) provided an in-depth overview of the technical requirements for electronic

money to function as a currency, and how Bitcoin achieves these features through its peer-to-

peer, blockchain network. According to Yermack (2015), a well-functioning currency should

satisfy three economic criteria, namely: it should serve as a medium of exchange, a store of

value, and a unit of account. He discussed how Bitcoin fares in these three categories and found

that Bitcoin had too few daily transactions to accommodate for an economy. Then, it becomes

difficult to consider Bitcoin as a store of value and a unit of account due to its high volatility.

High volatility causes the prices of goods in Bitcoin to vary strongly, even within the same day,

making it difficult to express value in terms of Bitcoin. These shortcomings make Bitcoin less

suited to the role of a currency and could be better regarded as a speculative investment asset

(Baek & Elbeck, 2015; Dyhrberg, 2016; Yermack, 2015).

2.1.2 Volatility

When developing a trading strategy, it can be helpful to consider the determinants and mag-

nitude of the volatility of cryptocurrencies. Dwyer (2015) found cryptocurrencies to display

higher volatility than regular stocks, and that the daily volatility is heavily right-skewed, indi-

cating that many days occur where the price of cryptocurrencies is unstable. High-frequency

trading tends to be more effective when the volatility of the commodity being traded is high,

this is signalled by the influx of media attention directed at HFT strategies during periods of

market turmoil (Wigglesworth, 2019). However, most research on cryptocurrency prediction

uses low-frequency data, such as a daily frequency (Fang et al., 2020). Similar research using

high-frequency data is more sparse, as HFT for cryptocurrencies is a more novel field. This

might make it worthwhile to investigate whether HFT methods can be successful in the volatile

cryptocurrency markets.

Baur and Dimpfl (2018) analysed asymmetric volatility effects for the 20 largest cryptocur-

rencies using the asymmetric threshold GARCH (TGARCH) model. They concluded positive

price shocks to have a larger increasing effect on the volatility of cryptocurrencies than negative

price shocks, an asymmetric effect that is in contrast with observations in the regular stock

market. Furthermore, their results showed that cryptocurrencies can be characterized as highly

volatile assets that display little correlation with traditional assets. These characteristics could
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provide investors with promising opportunities. For instance, cryptocurrencies might function

as a portfolio diversifier due to the lack of correlation with other assets, moreover, they might

prove valuable in trading strategies because of their high volatility.

2.2 Cryptocurrency trading

Cryptocurrencies have garnered most of their popularity over the last couple of years. Fang

et al. (2020) found that 85% of academic literature on cryptocurrency trading developed since

2018. They provided a comprehensive survey of 126 papers across six distinct research areas

concerning cryptocurrency trading. This section focuses on the existing literature in the field

of trading strategies using machine learning.

2.2.1 Prediction strategies

Chen et al. (2020) compared a set of statistical and machine learning models on their predictive

power when applied to Bitcoin data. The set of statistical models included Logistic Regression

(LR) and Linear Discriminant Analysis (LDA), while the machine learning methods consisted of

Random Forest (RF), Gradient Decision Tree Boosting (GTB), Quadratic Discriminant Anal-

ysis (QDA), Support Vector Machine (SVM), and Long Short-Term Memory neural network

(LSTM). Their models were fitted to both daily and 5-minute frequency data from 2017 to 2019.

The 5-minute data encompassed only price data, while the daily data included also features on

blockchain characteristics and gold spot price. Moreover, their final models were benchmarked

against the similar work of McNally et al. (2018).

Madan et al. (2015) published one of the first academic papers on high-frequency cryp-

tocurrency trading. They employed a Random Forest (RF), and a Generalized Linear Model

(GLM) using 10-minute Bitcoin price data from the first five years after the instalment of Bit-

coin in 2009. Moreover, they created RF, Binomial GLM, and Support Vector Machine (SVM)

models, using daily data on 26 features concerning Bitcoin trading and blockchain characteris-

tics. Similarly, Vo and Yost-Bremm (2020) designed a strategy by adopting an RF model using

five financial indicators derived from Open, High, Low, and Close (OHLC) Bitcoin price data.

These indicators convey information on the trend, momentum, volume, and volatility of the

price. Additionally, the models were fitted using 30 different data frequencies, ranging from 1

minute to 90 days, consisting of data from 2015 to 2017. This allowed them to make inferences

on the optimal trading horizon. Finally, they compared the optimal configurations of RF to a

Deep Learning (DL) approach.
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Borges and Neves (2020) took an alternative approach utilizing machine learning algorithms

when constructing a trading strategy. They constructed an Ensemble Voting (EV) strategy by

taking the unweighted average of four trading signals produced by individual models. The EV

consists of two linear and two non-linear models; LR and SVM, GTB, and RF respectively.

The hyperparameters of these algorithms are optimized using a grid search with negative log-

loss as the scoring metric, except for the SVM, which cannot produce this metric naturally.

They argued that negative log-loss, which also considers the probability estimate along with the

predicted label, is suitable because investment strategies benefit from predicting the correct price

movement with high confidence. The data used in their study consists of 1-minute data on 100

cryptocurrency pairs, traded on Binance from 2017 until 2018. The EV and individual models

were fitted to both the original data and various resampled versions of the original data. In line

with this approach, Sebastião and Godinho (2021) constructed multiple EV strategies consisting

of 6 models, namely the regression and classification counterparts of a linear regression model

based on Ordinary Least Squares (OLS), RF, and SVM. Three EV strategies were constructed

by requiring four, five, or six of the individual models to agree on a trading decision. Instead

of using high-frequency data, Sebastião and Godinho (2021) opted to use daily data from 2015-

2019, combining trading information and blockchain characteristics.

2.2.2 Performance and returns

Chen et al. (2020) found that the final machine learning models achieved an average accuracy

of 62.2%, significantly higher than the 53.0% average accuracy of the statistical methods. The

best performing machine learning model was a Long Short-Term Model (LSTM), which achieved

an accuracy of 67.2%, outperforming the benchmark LSTM model created by McNally et al.

(2018). Neither study reports on the profitability of the final strategies, nor do they consider

transaction costs. The same holds for Madan et al. (2015), they do not report on the final

profitability of their RF and GLM strategies. They discovered the RF model to outperform

the GLM model in terms of sensitivity, specificity, precision, and accuracy, with the RF model

obtaining an accuracy of 57.4%. Both Chen et al. (2020) and Madan et al. (2015) concluded

that statistical methods performed better when applied to low-frequency data, while machine

learning methods performed better when using high-frequency data.

Vo and Yost-Bremm (2020) measured the performance of their models not only by evaluation

metrics on the movement predictions, but also report on the returns of their trading strategies.

Returns are calculated by simulating a trading environment using the out-of-sample test data.
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Their findings show that the RF model performs best when using a 15-minute data frequency and

outperformed its DL counterpart. However, they did not go into depth on the exact structure

of the DL model, making it difficult to judge their RF model on its comparative performance.

The optimal RF model attained an F1-score of 97.5% on both buy and sell decisions and yielded

657.45% annualized average returns over 3 years with a Sharpe Ratio of 8.22, transaction costs

not considered. Furthermore, their findings showed that there is a significant drop in accuracy

when the frequency is increased beyond 30-minute intervals.

Borges and Neves (2020) compared their EV and individuals models to a benchmark B&H

strategy. Their average results for all markets and resampling methods showed that the EV

classifier reported a return on investment of 615% over the period 2017-10-30 to 2018-10-30

and that it outperformed the individual models in most metrics, indicating that combining

machine learning methods can be valuable for trading strategies. The individual models were

also shown to outperform a B&H strategy in terms of most evaluation metrics. They noted

that the profitability of their strategies is likely excessive, attributed to the fact that there is

an absence of a bid-ask spread in the data.

2.3 Feature engineering

Machine learning models are trained on features, also known as explanatory variables, to predict

the outcome of the target variable. Hawkins (2004) discussed a myriad of problems, such as

overfitting and slow training speed, that arise when too many features are included in a predic-

tive model. This raises questions about which features to include when developing a machine

learning model. Kursa et al. (2010) designed Boruta, a novel feature selection algorithm. The

method iteratively determines what features bring enough explanatory power to the model by

comparing them to randomly generated features. They showed that this approach is statisti-

cally grounded and allows for a more efficient selection of relevant features. Chen et al. (2020)

and McNally et al. (2018) utilized Boruta to discern the most important features for their cryp-

tocurrency price prediction models. On the other hand, studies that did not rely on a numerical

method often used existing results or common practices from financial literature to decide on

what features to include (Borges & Neves, 2020; Nakano et al., 2018; Vo & Yost-Bremm, 2020).
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3 Methodology

3.1 Data collection and preprocessing

The data is collected from the cryptocurrency exchange Bitfinex, where historical data on the

currency pair BTC/USD from 2013-04-27 to 2021-05-03 is extracted at the 1-minute level, the

highest granularity provided by the Bitfinex API. The 1-minute data set is resampled to obtain

data of 5- and 15-minute frequencies. It should be noted that it is also possible to query lower-

frequency data directly from the API, however, resampling is more efficient and allows for any

desired data frequency longer than 1-minute. The OHLC prices are significant up to 5 digits.

Furthermore, a row from the candlestick data extracted through the API has six columns and

is structured as follows;

(Unix timestamp - Open - Close - High - Low - Volume).

The raw data consists of data from 2013-04-27 to 2021-05-03, which is separated into two subsets

of data, the first period concerns 2017-01-01 to 2018-05-01, while the second regards 2020-01-01

to 2021-05-01. These subsets are used to compare the profitability of the final trading strategies

during two different epochs, and to see whether the market has become more efficient over the

years. The closing price of Bitcoin over these intervals is displayed in Figure 1 and Table 1

contains descriptive statistics on the raw data and the data subsets.

Figure 1: Closing price of Bitcoin in both subsets
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In the case of a missing value, the complete row for the concerning timestamp is missing

in this data. A missing value occurs when the API failed to record data at the time. There

are many missing values in the early years of interval, during this time a missing value often

means there were simply no trades on the exchange at that point in time. Missing values are a

lot less prevalent in recent years since cryptocurrencies are now continuously being traded. To

Jacco Broere page 10 of 31



Table 1: Descriptive statistics on raw data and data subsets at 1-minute frequency

Sample period
27 April 2013

– 3 May 2021

1 January 2017

– 1 May 2018

1 January 2020

– 1 May 2021

# 1-min observations 4,216,320 698,401 699,841

# missing observations 909,520 21,178 10,904

Closing price (USD)

Mean 5,947.80 5,398.52 20,209.23

Standard deviation 10,153.35 4,398.28 17,094.83

Maximum 64,787.76 19,891.00 64,787.76

Minimum 63.04 744.48 4,030.10

Volume (BTC)

Total volume 63,251,207.14 19,881,380.68 4,237,735.74

Mean volume per minute 14.98 28.14 6.05

impute the missing data, forward fill imputation is used, which means the observation from the

preceding timestamp is copied to the current one, similar to Vo and Yost-Bremm (2020).

3.1.1 Feature Selection and Engineering

Boruta (Kursa et al., 2010), was used to select the features to be included in the models. The

procedure starts by generating copies of all features, and shuffling them to remove all correlation

with the dependent variable. That is, the n × k matrix X, containing n observations and k

features, is extended to the n × 2k matrix X̃. Let xi, x̃i denote the column vectors of their

respective matrices, then the column vectors x̃i are constructed as follows using the random

uniform shuffling function v(·),

x̃i =

 xi for i ∈ {1, . . . , k},

v(xi−k) for i ∈ {k + 1, . . . , 2k}.
(1)

The resulting matrix X̃ is used to train an RF classifier for a predetermined number, m,

iterations and at each iteration, j, the feature importance scores; Zij for i ∈ {1, . . . , k},

are compared to the maximum feature importance scores of the random features; Zmax
j =

max{Zk+1j , . . . , Z2kj}. Let I(·) and E(·) denote the indicator function and the expected value

operator, respectively, and l ≤ m is the current number of iterations. If we assume the following

Jacco Broere page 11 of 31



under H0;

Wi =
l∑

j=1

I(Zij > Zmax
j )

H0∼ BIN(l, p = 0.5), (2)

then the following hypotheses can be tested using two one-sided tests of equality at each itera-

tion,

H0 : E(Wi) =
l

2
, Ha : E(Wi) >

l

2
, (3)

H0 : E(Wi) =
l

2
, Ha : E(Wi) <

l

2
. (4)

If the hypothesis in equation (3) is rejected, the feature is deemed important, if the hypothesis

in equation (4) is rejected, the feature is rejected and x̃i dropped from X̃. When hypotheses

(3) and (4) are both not rejected, the feature is flagged tentative, however, retained. After

every iteration, the matrix X̃ is reconstructed using the remaining features and the hypothesis

tests are performed again. This is repeated for the predetermined number of iterations and

leaves a subset of features to be included in the model. The p-values of these tests should be

corrected for multiple testing as the procedure is executed on many features simultaneously,

this study employed the package BorutaPy, which utilizes the Benjamini-Hochberg correction

procedure (Benjamini & Hochberg, 1995). The procedure can be made more or less conservative

by changing the confidence level, α, of the test, which is set to α = 0.05 in this study.

Boruta is employed on a feature set of 192 financial indicators available through the Pan-

das TA package in Python1. Some available indicators are prevalent in existing literature for

cryptocurrency trading, such as the Relative Strength Index (RSI), Stochastic Oscillator (SO),

and Moving Average Convergence-Divergence (MACD), among others (Borges & Neves, 2020;

Nakano et al., 2018; Vo & Yost-Bremm, 2020). Features that were still deemed tentative after

a hundred iterations are decided not to be included, as a simple model is generally preferred

(Hawkins, 2004). Furthermore, all continuous features are scaled using min-max normalization,

that is, the normalized value of x is given by:

xnorm =
x−minx

maxx−minx
. (5)

1The list of all 192 indicators can be found here: https://github.com/twopirllc/pandas-ta/blob/master/
README.md
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3.2 Mathematical framework

3.2.1 Problem statement

Let pct denote the closing price of a cryptocurrency at time t and h ∈ {1, . . . , 2×7×24×4 = 1344}

the time in two weeks at 15-minute frequency. Then the price prediction problem concerns the

prediction of yt+h+1 ∈ {0, 1}, where

yt+h+1 ≡ I
(
pct+h+1 > (1 + τ)pct+h

)
. (6)

Let τ denote the relative transaction costs, this study considers τ ∈ {0, 0.001} equivalently 0%

and 0.1%. The model at time t is trained on the n × k window matrix Xt, with k features

and a window size of eight weeks, i.e., 5376 observations at 15-minute frequency. The model

is retrained at the end of a block of two weeks using the next window, that is, the first two

weeks of data in Xt are dropped and the new two weeks of data are added to construct the next

window matrix Xt+1344, in the case of a 15-minute frequency. The same structure is applied

to 5-minute and 30-minute data, which results in window sizes of n = 16128 and n = 2688

respectively.

Once the model is trained on Xt, it can be deployed at time t + h to predict the next

movement of the closing price, ŷt+h+1. Then a trading strategy is constructed as follows; take

or hold a long position if ŷt+h+1 = 1, and relinquish the long position or stay out of the market

if ŷt+h+1 = 0. It should be noted that shorting opportunities are not available on the market

from which the data has been gathered, and is therefore not considered in the trading strategy.

For all three models discussed below in sections 3.2.2–4, a grid search with cross-validation

is employed to find the optimal combination of hyperparameters. Hyperparameters are settings

that dictate the learning process of the algorithms and can be adjusted in an attempt to find the

best configuration for the prediction problem at hand. The cross-validation procedure for the

grid search is structured in conformity with the prediction strategy described at the beginning

of this section. That is, in each iteration of cross-validation eight consecutive weeks are used as

training data, and the ninth and tenth weeks serve as the validation set. Five iterations of this

concept are illustrated in Figure 2, every dot represents a block of two weeks. The procedure is

applied over the first 18 weeks of data, which means that five iterations of cross-validation are

performed for each configuration of hyperparameters.

Finally, the three models with optimized configurations are combined into an EV classifier,

through a process called hard-majority voting. Hard-majority voting is a voting process where
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the class with the majority of votes is yielded as the final prediction. In our case, the EV

classifier yields the price movement prediction that is produced by two out of the three individual

models. Additionally, a soft-majority voting approach is employed for the 15-minute strategy.

Soft-majority voting takes the average of the probability estimates produced by the individual

models and predicts the future price movement with the highest average probability. Platt

scaling is used to produce probability estimates for the SVM model discussed in section 3.2.4,

as SVM models cannot produce probability estimates naturally (Platt et al., 1999).

Figure 2: Cross-validation structure for a sliding window model

The hyperparameter space used in the grid search for each of the models can be found in

Table 2, the parameter space for all numeric parameters are determined through trial and error,

such that the optimal outcomes are not on the borders of the parameter space. Moreover, this

grid search performs its evaluation of the models based on a scoring metric. This study opts to

use the precision score on buy decisions as the scoring metric for all models, as it is important

to predict the positive price movements with high confidence and limit the amount of losing

trades. The precision score is defined as the ratio of true positives and the sum of true positives

and false positives, which can be formalized as follows:

pr =
tp

tp+ fp
.

The main objective of this study is to make inferences on the following hypotheses. Let

E(Rs) denote the expected weekly return on investment of a certain algorithmic trading strategy,

s, and let E(Rh) denote the expected weekly return on investment of the B&H strategy. The

hypotheses can then be formalized as follows:

H0 : E(Rs) = E(Rh), Ha : E(Rs) > E(Rh), (7)

which can be tested using the Wilcoxon Signed-Rank test on the series of weekly returns of the
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trading strategies (Wilcoxon, 1992). This test is performed for 48 hypotheses, each hypothesis

considers a trading strategy based on a different combination of time period, transaction costs,

data frequency, and type of algorithm. As multiple hypotheses are tested simultaneously, the

resulting p-values should be corrected for multiple testing. This study employs the Benjamini-

Hochberg correction procedure (Benjamini & Hochberg, 1995), controlling the false discovery

rate (FDR) at 5%.

Table 2: Subspace of values for grid search with cross-validation

Algorithm Hyperparameter Space of values

Number of trees 250

Number of features per tree
√

num. features

Random Forest Min. number of obs. to split a node {11, 101, 501, 1001}
Max. depth of each tree {5, 10, 20, 50}
Splitting measure Gini impurity

Scoring metric precision

Regularization l2

Logistic Regression λ {0.1, 1, 10, 100, 1000, 10000}
Intercept Included

Scoring metric precision

λ {0.1, 1, 10, 100, 1000}
Support Vector Machine Kernel Linear

Scoring metric precision

3.2.2 Random Forest

A Random Forest is an ensemble learning method consisting of a collection of individual decision

trees (Breiman, 2001). The decisions made by each decision tree are aggregated to yield a final,

more robust prediction. The individual decision trees are not trained on the entire data set,

instead, different samples are created using Bootstrap Aggregation (bagging) (Breiman, 1996).

A bootstrap sample is generated by taking random samples with replacement from the original

data. Then each decision tree is trained on a different bootstrap sample, furthermore, the

individual trees do not have access to the complete set of features either. Namely, in each

decision tree, a random subset of features is used, forcing the individual decision trees to create

different splitting criteria from each other.
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3.2.3 Logistic Regression

Binomial Logistic Regression models a binary target variable, by assuming a linear relationship

between the features, xti for i ∈ {1, . . . , k}, and the log-odds of the target variable, yt ∈ {0, 1},

written in terms of the conditional probability (Hosmer Jr et al., 2013),

log

(
P (yt = 1|xt)

1− P (yt = 1|xt)

)
= β0 +

k∑
i=1

βixti ≡ xTt β. (8)

The above can be used to arrive at an expression for the conditional probability, in terms of the

logistic sigmoid function, σ(·).

P (yt = 1|xt) =
exp
(
xTt β

)
exp
(
xTt β

)
+ 1

=
1

1 + exp
(
−xTt β

) ≡ σ(xTt β). (9)

The expression in equation (9) can be used to construct the negative log-likelihood of the sample

Ft = {y1, . . . , yt} ∪ {x11, . . . , xtk},

− logL(β0, . . . , βk;Ft) = −
n∑

t=1

{
yt log

(
σ(xTt β)

)
+ (1− yt) log

(
1− σ(xTt β)

)}
. (10)

This expression can be minimized using computerized algorithms. An l1 or l2 regularization

function, R(·), can be included to reduce overfitting (Hoerl & Kennard, 1970; Tibshirani, 1996).

3.2.4 Support Vector Machine

A Support Vector Machine (SVM) (Cortes & Vapnik, 1995), is a machine learning algorithm

that can be used for classification and regression tasks. SVM attempts to separate a set of data

points using a hyperplane, which is defined to maximize the distance to the nearest point of

each group. Let w ∈ Rk denote the normal vector of the hyperplane, and let b ∈ R be the

offset from the origin. The hyperplane then corresponds to the vectors, z ∈ Rk, satisfying the

equation;

wT z − b = 0. (11)

Contrary to previous algorithms, SVM defines the labels of the target variable as −1 for the

negative class and 1 for the negative class, such that yt ∈ {−1, 1}. In optimizing the algorithm,

the normal vector, w, and offset, b, are chosen to maximize the distance from the hyperplane to

the data points, xt ∈ Rk corresponding to the target variable yt. The algorithm achieves this by

maximizing the margin, which is defined as the distance between the maximum and minimum
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margin hyperplane, satisfying respectively:

wT z − b = 1, wT z − b = −1. (12)

Geometrically the margin can then be shown to be equal to 2
‖w‖ , now maximizing the margin is

clearly equivalent to minimizing ‖w‖. However, the data is often not perfectly linearly separable,

in this case, the hinge loss function, L(yt) = max{0, yt(wTxt − b)}, can be introduced. This

leads to the minimization problem with regularization parameter λ ∈ R+,

min
w,b

λ‖w‖2 +
1

n

n∑
t=1

L(yt). (13)

This variation uses a so-called linear kernel, however, SVM can be extended easily to non-linear

classification by using a different kernel, also known as a kernel trick (Bishop, 2006). This study

considers only a linear kernel due to the increase in computational complexity when employing

a kernel trick and the size of the data set.

3.3 Backtesting

To evaluate the algorithms on their profitability, a backtesting framework is employed using

Backtrader2 for Python. This framework allows us to simulate a trading environment by letting

the algorithms trade on historical data. The trading environment can be customized to include

transaction costs and what price the orders should be matched against, i.e., the opening price

of the next time interval or the closing price of the current interval, this study uses the former

as it is not realistic to trade on the closing price of an interval after it has already passed. This

study compares the performance of the final strategies using different values for the relative

transaction costs, namely τ ∈ {0, 0.001}, with trading strategies based on g-minute frequencies,

with g ∈ {5, 15, 30}. The performance of these models is measured using the unseen test set

from both 2017/18 and 2020/21, containing the remaining 51 weeks of data that follow after

the 18 weeks used in the grid search over the hyperparameters.

The framework provides a log of the trading history containing the prices at which the

orders were filled, along with the net and gross profit of each trade. Where the net profit is

calculated by subtracting the transaction costs of both buying and selling from the gross profit.

Furthermore, it provides performance metrics on a trading strategy, s, such as annualized weekly

returns, Ra
s , defined as:

Ra
s =

(
(1 +Rs)

52 − 1
)
, (14)

2https://www.backtrader.com/

Jacco Broere page 17 of 31

https://www.backtrader.com/


where Rs denotes the mean weekly return on investment of trading strategy s. Now, the

annualized Sharpe ratio, Sa
s , can be constructed as:

Sa
s =

Ra
s −Ra

f

σ̂as
, (15)

where Ra
f denotes the annual risk-free return and σ̂as denotes the annualized sample standard

deviation of the weekly returns. In this study, an annual risk-free return of Ra
f = 1% is used.

Other metrics include the maximum drawdown (MDD), which is the maximum observed de-

cline in portfolio value from a peak to a trough. The maximum drawdown for a period of n

observations can be formalized as follows:

MDDn = max
t∈{1,...,n}

(
max

h∈{1,...,t−1}

(
Vh − Vt
Vt

))
, (16)

with Vt denoting the value of the portfolio of a trading strategy at time t. MDD is used as a

measure of the risk involved in a trading strategy. Furthermore, the F1-scores on both buy and

sell decisions are reported, which is defined as the harmonic mean of precision, pr = tp/(tp+fp),

and recall, re = tp/(tp+ fn), where tp, fp, tn, fn denote the number of true/false positives and

negatives respectively, then the F1-score can be formalized as follows:

F1 =
2

pr−1 + re−1
= 2 · pr · re

pr + re
. (17)

Lastly, the win rate and the time in the market are reported by the backtesting framework,

these are defined respectively as the percentage of profitable trades and the amount of time a

long position is held. The win rate considers transaction costs when determining whether a

trade is winning or not. That is, a trade is considered winning when it is profitable after the

subtraction of the transaction costs of both buying and selling. The time in the market can be

used as a measure for the aggressiveness of a trading strategy, such that a lower percentage of

time spent in the market indicates that a strategy is more conservative.

4 Results

Table 3 summarizes the performance at a 15-minute data frequency of all three individual mod-

els, the ensemble classifier, and a B&H strategy when no transaction costs are considered. As

shown, all algorithmic strategies outperform the B&H strategy over the test set in 2017/18. The

RF model performed best in 2017/18, achieving annualized returns of 3643% and an annualized

Sharpe ratio of 4.58. While RF is outperformed in terms of returns by the B&H strategy dur-
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Table 3: Results of all strategies using a 15-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 50.54% 52.27% 51.87% 51.80% 51.83%

(50.65%) (52.77%) (52.42%) (52.26%) (52.40%)

F1-score (Buy) 67.15% 50.45% 50.10% 50.23% 50.04%

(67.24%) (54.27%) (54.18%) (55.46%) (54.97%)

F1-score (Sell) 0.00% 53.97% 53.51% 53.27% 53.49%

(0.00%) (51.17%) (50.52%) (48.56%) (49.52%)

Precision (Buy) 50.54% 53.07% 52.62% 52.53% 52.58%

(50.65%) (53.25%) (52.88%) (52.57%) (52.77%)

Annualized returns (%) 795.86% 571.52% 295.11% 213.89% 280.62%

(408.34%) (3642.87%) (1004.26%) (814.17%) (803.27%)

Annualized Sharpe ratio (%) 3.51 4.43 3.33 2.79 3.22

(2.00) (4.58) (3.30) (3.00) (3.03)

Win rate (%) N/A 69.52% 70.38% 68.57% 69.73%

N/A (64.51%) (70.49%) (69.73%) (70.19%)

Maximum Drawdown (%) 29.97% 20.26% 25.35% 25.89% 25.36%

(69.54%) (38.09%) (38.48%) (54.74%) (46.05%)

Time in market (%) 100% 45.67% 45.92% 46.30% 45.88%

(100%) (52.61%) (53.16%) (56.52%) (55.03%)

Table 4: Results of all strategies using a 15-minute frequency and a 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 34.14% 66.15% 62.99% 63.41% 63.43%

(41.20%) (59.01%) (58.05%) (58.03%) (58.14%)

F1-score (Buy) 50.90% 11.93% 28.97% 26.94% 27.11%

(58.35%) (24.23%) (28.83%) (28.80%) (28.64%)

F1-score (Sell) 0.00% 79.05% 74.97% 75.59% 75.59%

(0.00%) (71.91%) (70.26%) (70.25%) (70.39%)

Precision (Buy) 34.14% 53.34% 42.00% 42.31% 42.43%

(41.20%) (50.80%) (47.86%) (47.82%) (48.10%)

Annualized returns (%) 795.67% 20.90% -67.47% -66.68% -65.01%

(407.03%) (-33.68%) (-64.45%) (-61.38%) (-57.05%)

Annualized Sharpe ratio (%) 3.51 0.90 -3.44 -3.43 -3.32

(2.00) (-0.48) (-1.62) (-1.25) (-1.09)

Win rate (%) N/A 53.90% 44.36% 45.06% 45.48%

N/A (57.05%) (51.76%) (52.85%) (52.85%)

Maximum Drawdown (%) 29.97% 16.42% 62.07% 62.03% 60.80%

(69.53%) (53.42%) (70.94%) (73.15%) (71.42%)

Time in market (%) 100% 4.30% 17.97% 15.94% 16.03%

(100%) (12.90%) (17.75%) (17.75%) (17.46%)
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ing 2020/21, it performs better than the B&H strategy in terms of Sharpe ratio and Maximum

Drawdown. RF and B&H attain an annualized Sharpe ratio of 4.43 and 3.51 respectively during

2020/21. These findings suggest that the RF strategy could be considered less volatile than a

B&H strategy when transaction costs are ignored.

Table 4 contains the performance metrics of the 15-minute frequency strategies when trans-

action costs of 0.1% are included. The table shows that the F1-score on the buy decision dropped

once the models need to predict price movements larger than the 0.1% threshold imposed by

the transaction costs. Namely, the average F1-score on buy decisions dropped from 52% to an

average of 26%. In both time periods, all algorithmic trading strategies now attain negative

returns apart from the RF strategy in 2020/21, which attained annualized returns of 20.9%

and an annualized Sharpe ratio of 0.90. Moreover, in Table 6–9 in the appendix, results can

be found for 5-minute and 30-minute frequencies. As shown, none of the algorithmic at 5- and

30-minute frequencies are profitable when transaction costs of 0.1% are factored in, except for

the 5-minute RF strategy in 2017/18. In contrast, the 5-minute strategies are highly profitable

when no transaction fees are imposed. Then, the most profitable strategy, RF, attains returns

of 322932% and 1149% in 2017/18 and 2020/21 respectively. The disparity between the inclu-

sion and exclusion of transaction costs could be attributed to the small profit margins that are

Table 5: Results of Wilcoxon Signed-Rank test for hypothesis in equation (7)

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

No transaction costs 0.1% transaction costs

Test statistic p-value Test statistic p-value

5-minute frequency

RF 499 (799) 0.377 (<0.001∗) 199 (355) 1.000 (0.923)

LR 298 (684) 0.983 (0.005∗) 186 (343) 1.000 (0.942)

SVM 405 (657) 0.794 (0.013∗) 201 (332) 0.999 (0.956)

EV 432 (687) 0.690 (0.005∗) 212 (353) 0.999 (0.926)

15-minute frequency

RF 430 (612) 0.698 (0.047) 229 (300) 0.998 (0.982)

LR 333 (464) 0.955 (0.543) 142 (259) 1.000 (0.995)

SVM 316 (490) 0.971 (0.419) 154 (261) 1.000 (0.995)

EV 320 (473) 0.968 (0.500) 158 (265) 1.000 (0.994)

30-minute frequency

RF 414 (487) 0.762 (0.433) 184 (279) 1.000 (0.990)

LR 406 (401) 0.791 (0.649) 191 (317) 1.000 (0.970)

SVM 464 (391) 0.543 (0.839) 199 (283) 1.000 (0.989)

EV 463 (399) 0.548 (0.814) 191 (308) 1.000 (0.977)

Note: ∗significant after Benjamini-Hochberg correction
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exploited by high-frequency strategies. These margins are abolished by the 0.1% transaction

fee, often resulting in an unprofitable strategy.

In Table 4, it is noteworthy that compared to the other three algorithmic trading strategies,

RF is more than three times as conservative, spending only 4.3% of time in the market in

2020/21 as opposed to an average of 16.6% among the other three strategies. The results also

show that after the introduction of transaction costs, the models have become more conservative,

namely, the average time spent in the market has dropped from 48% to 15% across both time

periods and each of the frequencies. Table 10 and 11 in the appendix contain the results of

using soft-majority voting at 15-minute frequency. Table 11 shows that the EV strategy now

attains returns of 118% in 2017/18 with 0.1% transaction costs, in contrast with the negative

returns of the hard-majority voting EV strategy in the same period. Furthermore, the table

shows that the soft voting EV strategy has become more conservative, spending 13% and 5%

of time in the market during 2017/18 and 2020/21 respectively.

Boruta selected 48, 40, and 30 features for the 5-, 15-, and 30-minute data frequencies

respectively. Figure 3 and 4 in the appendix show the importance scores for the features that

were selected by Boruta at 15-minute frequency, for the inclusion and exclusion of transaction

costs. Both figures show, among others, two momentum indicators from the Elder-Ray Index to

be important, namely the Bull Power (BULLP) and Bear Power (BEARP). Further explanation

on all indicators can be found in the Pandas TA documentation3.

Table 5 contains the test statistics and corresponding p-values of testing the main hypothesis

in equation (7) using a Wilcoxon Signed-Rank test (Wilcoxon, 1992). The test is performed on

all four strategies at each of the frequencies, g ∈ {5, 15, 30}, for both time periods. Findings

revealed that after correcting the p-values using the Benjamini-Hochberg procedure, there is

not enough statistical evidence to reject the null hypothesis of equal expected returns between

the B&H and any of the alternative strategies when transaction costs of 0.1% are imposed at a

5% confidence level. However, when transaction costs are excluded, there is enough statistical

evidence to reject the null hypothesis of equal expected returns in favour of the alternative

hypothesis of higher expected returns for all four strategies based on a 5-minute frequency.

3Explanation on indicators can be found here: https://github.com/twopirllc/pandas-ta/blob/master/
README.md
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5 Conclusion

This study examined the profitability of multiple trading strategies based on machine learning

algorithms, namely Random Forests, Logistic Regressions, and Support Vector Machines. Along

with a combination of these algorithms in the form of an Ensemble Voting classifier. The

performance of the trading strategies is measured against test samples from a recent and earlier

timeframe, namely in 2017/18 and 2020/21, to examine if the cryptocurrency market has evolved

and whether the results from research in the foregoing years continue to hold.

This work contributed to the understudied field of high-frequency algorithmic cryptocur-

rency trading, by exploring strategies based on data frequencies up to 30-minutes, in contrast

to similar studies that are often conducted using lower frequency data. The subset features that

are most relevant at each data frequency are determined through the iterative feature selection

tool Boruta. The selected features are used in a sliding window model to predict a binary target

variable, the movement of the closing price in the next interval.

By means of quantitative analysis through a backtesting framework for the algorithmic

strategies, it can be concluded that a high-frequency trading strategy based on machine learning

could be employed as a profitable investment strategy. However, based on a statistical test,

the expected returns of these strategies are not significantly higher than the returns from an

elementary Buy-and-Hold strategy when transaction costs are imposed on the model in either

testing period. In a theoretical scenario without transaction costs, strategies based on 5-minute

data can be shown to have significantly higher returns than the Buy-and-Hold strategy during

2017/18. Furthermore, from the analysis, it can be concluded that the exploitability of the

cryptocurrency market through algorithms has declined over time, as the models have been

found to perform worse in 2020/21 compared to 2017/18.

There is no clearly distinguishable winner among the machine learning models in terms of

performance, neither can we conclude that the Ensemble Voting strategy performs better than

the individual models. The comparison between the behaviour of the trading strategies when

considering transaction costs and neglecting them provides insight into how the behaviour of

the algorithms changes when a threshold is imposed on the target variable. We conclude that

the algorithms become more conservative as trades with small margins become unprofitable

once transaction costs are considered, leaving the models to predict an upwards movement only

when a relatively large price increase is expected.

Several limitations have been identified. Namely, this study was not able to deploy an
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exhaustive grid search over the hyperparameters of each model due to the accompanied compu-

tational complexity, nor was the possibility of a strategy based on a 1-minute frequency explored

for the same reason. However, a 1-minute strategy would likely not be profitable when transac-

tion costs are considered, as the profit margins for a 1-minute frequency would be even smaller

than for a 5-minute strategy, which is already unprofitable with the inclusion of transaction

costs. Moreover, the cryptocurrency market had an increasing trend in both testing periods,

indicated by the high returns of the B&H strategy. Smaller subsets of data with varying market

conditions might be considered to find out how robust the trading strategies are when being

tested in a bearish market. For the SVM model, non-linear kernels have not been considered

due to the increased computational complexity, exploring the performance of these non-linear

kernels might be of future research interest. Lastly, the soft-majority voting approach was only

applied to the 15-minute strategies. However, the increase in performance shows that it could

prove promising for future research.
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Appendix

Table 6: Results of all strategies using a 5-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 49.90% 52.93% 51.71% 51.82% 52.19%

(50.21%) (52.52%) (51.81%) (51.76%) (51.84%)

F1-score (Buy) 66.58% 47.48% 47.92% 45.14% 46.35%

(66.85%) (51.03%) (54.41%) (53.90%) (54.20%)

F1-score (Sell) 0.00% 57.36% 55.00% 57.04% 56.88%

(0.00%) (53.92%) (48.89%) (49.41%) (49.24%)

Precision (Buy) 49.90% 53.57% 51.89% 52.27% 52.67%

(50.21%) (52.91%) (51.82%) (51.81%) (51.87%)

Annualized returns (%) 804.23% 1149.4% 339.5% 505.0% 653.1%

(398.22%) (322932%) (12720%) (7772%) (13893%)

Annualized Sharpe ratio (%) 3.52 5.50 3.44 4.15 4.65

(1.98) (9.92) (6.06) (5.58) (6.17)

Win rate (%) N/A 65.79% 62.47% 62.98% 64.11%

N/A (59.49%) (59.36%) (60.29%) (59.58%)

Maximum Drawdown (%) 30.51% 22.02% 26.52% 23.01% 22.83%

(69.59%) (27.51%) (42.06%) (39.74%) (43.32%)

Time in market (%) 100% 39.72% 42.80% 37.93% 39.21%

(100%) (46.76%) (50.86%) (49.79%) (50.29%)

Table 7: Results of all strategies using a 5-minute frequency and 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 24.18% 75.82% 74.15% 75.38% 75.39%

(33.91%) (66.38%) (59.17%) (59.14%) (59.21%)

F1-score (Buy) 38.95% 7.02% 16.59% 10.73% 11.11%

(50.65%) (8.84%) (29.31%) (29.87%) (29.19%)

F1-score (Sell) 0.00% 86.11% 84.71% 85.72% 85.72%

(0.00%) (79.39%) (71.29%) (71.17%) (71.36%)

Precision (Buy) 24.18% 50.13% 37.75% 43.57% 43.90%

(33.91%) (54.94%) (35.49%) (35.73%) (35.49%)

Annualized returns (%) 795.46% -38.57% -62.76% -50.46% -42.82%

(396.92%) (48.82%) (-17.73%) (-44.73%) (-5.18%)

Annualized Sharpe ratio (%) 3.52 -2.22 -3.83 -2.52 -2.03

(1.98) (1.28) (-0.08) (-0.75) (0.17)

Win rate (%) N/A 51.14% 38.88% 47.45% 49.05%

N/A (54.60%) (52.26%) (50.53%) (52.36%)

Maximum Drawdown (%) 30.45% 42.20% 60.90% 53.63% 51.04%

(69.58%) (38.98%) (57.38%) (68.23%) (56.22%)

Time in market (%) 100% 1.82% 6.81% 3.40% 3.50%

(100%) (2.97%) (19.21%) (19.71%) (19.05%)
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Table 8: Results of all strategies using a 30-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 51.13% 52.81% 52.39% 53.17% 53.15%

(50.90%) (52.00%) (52.35%) (52.22%) (52.23%)

F1-score (Buy) 67.67% 49.24% 48.32% 56.88% 52.69%

(67.46%) (49.93%) (54.31%) (53.60%) (54.40%)

F1-score (Sell) 0.00% 55.92% 55.86% 48.76% 53.61%

(0.00%) (53.90%) (50.20%) (50.75%) (49.84%)

Precision (Buy) 51.13% 54.72% 54.30% 53.74% 54.48%

(50.90%) (53.22%) (53.04%) (52.99%) (52.90%)

Annualized returns (%) 793.42% 500.35% 597.96% 1017.95% 912.21%

(409.72%) (711.56%) (541.47%) (192.21%) (250.54%)

Annualized Sharpe ratio (%) 3.51 4.10 4.79 4.65 4.83

(2.00) (2.77) (2.60) (1.69) (1.88)

Win rate (%) N/A 71.57% 73.16% 72.33% 72.99%

N/A (63.21%) (68.73%) (68.56%) (68.55%)

Maximum Drawdown (%) 28.92% 20.48% 15.78% 24.98% 21.76%

(69.53%) (52.37%) (54.70%) (52.13%) (56.60%)

Time in market (%) 100% 41.82% 40.99% 53.15% 47.87%

(100%) (44.97%) (53.39%) (52.08%) (53.85%)

Table 9: Results of all strategies using a 30-minute frequency and 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 39.04% 61.61% 57.02% 58.32% 58.30%

(44.39%) (55.95%) (55.34%) (55.21%) (55.34%)

F1-score (Buy) 56.15% 16.88% 32.89% 31.65% 31.60%

(61.49%) (32.55%) (36.11%) (35.47%) (35.67%)

F1-score (Sell) 0.00% 75.04% 68.39% 70.02% 70.01%

(0.00%) (67.30%) (65.68%) (65.70%) (65.80%)

Precision (Buy) 39.04% 54.51% 42.12% 43.98% 43.94%

(44.39%) (50.83%) (49.49%) (49.21%) (49.48%)

Annualized returns (%) 793.24% -12.28% -9.64% -3.67% -7.66%

(408.40%) (-55.24%) (-8.19%) (-52.04%) (-19.26%)

Annualized Sharpe ratio (%) 3.51 -0.43 -0.19 0.01 -0.13

(2.00) (-1.15) (0.17) (-0.80) (-0.03)

Win rate (%) N/A 56.71% 48.07% 47.31% 47.04%

N/A (55.22%) (56.29%) (53.66%) (56.02%)

Maximum Drawdown (%) 28.93% 26.82% 30.14% 29.75% 29.77%

(69.52%) (67.39%) (41.23%) (51.28%) (42.98%)

Time in market (%) 100% 7.15% 25.00% 21.95% 21.92%

(100%) (20.91%) (25.50%) (25.01%) (25.01%)
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Table 10: Results of all strategies using a 15-minute frequency with soft-majority voting and
no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 50.54% 52.27% 51.87% 52.52% 52.37%

(50.65%) (52.77%) (52.42%) (52.28%) (52.85%)

F1-score (Buy) 67.15% 50.45% 50.10% 49.25% 49.79%

(67.24%) (54.27%) (54.18%) (54.16%) (54.57%)

F1-score (Sell) 0.00% 53.97% 53.51% 55.40% 54.69%

(0.00%) (51.17%) (50.52%) (50.24%) (51.00%)

Precision (Buy) 50.54% 53.07% 52.62% 53.56% 53.28%

(50.65%) (53.25%) (52.88%) (52.74%) (53.29%)

Annualized returns (%) 795.86% 571.52% 295.11% 130.90% 362.16%

(408.34%) (3642.87%) (1004.26%) (1210.68%) (3739.55%)

Annualized Sharpe ratio (%) 3.51 4.43 3.33 2.18 3.77

(2.00) (4.58) (3.30) (3.61) (4.64)

Win rate (%) N/A 69.52% 70.38% 66.80% 71.52%

N/A (64.51%) (70.49%) (69.77%) (70.64%)

Maximum Drawdown (%) 29.97% 20.26% 25.35% 24.96% 24.35%

(69.54%) (38.09%) (38.48%) (40.70%) (35.37%)

Time in market (%) 100% 45.67% 45.92% 43.01% 44.33%

100% (52.61%) (53.16%) (53.42%) (53.12%)

Table 11: Results of all strategies using a 15-minute frequency with soft-majority voting and a
0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV

Metric

Accuracy 34.14% 66.15% 62.99% 65.21% 65.71%

(41.20%) (59.01%) (58.05%) (58.08%) (58.29%)

F1-score (Buy) 50.90% 11.93% 28.97% 4.21% 13.20%

(58.35%) (24.23%) (28.83%) (14.37%) (22.71%)

F1-score (Sell) 0.00% 79.05% 74.97% 78.74% 78.63%

(0.00%) (71.91%) (70.26%) (72.25%) (71.44%)

Precision (Buy) 34.14% 53.34% 42.00% 35.06% 48.58%

(41.20%) (50.80%) (47.87%) (45.34%) (48.00%)

Annualized returns (%) 795.67% 20.90% -67.47% -19.58% -0.16%

(407.03%) (-33.68%) (-64.17%) (19.59%) (118.07%)

Annualized Sharpe ratio (%) 3.51 0.90 -3.44 -1.95 0.07

(2.00) (-0.48) (-1.61) (0.65) (1.72)

Win rate (%) N/A 53.90% 44.36% 28.77% 50.96%

N/A (57.05%) (51.87%) (55.24%) (59.84%)

Maximum Drawdown (%) 29.97% 16.42% 62.07% 20.72% 18.76%

(69.53%) (53.42%) (70.66%) (37.16%) (38.65%)

Time in market (%) 100% 4.30% 17.97% 2.15% 5.37%

100% (12.90%) (17.75%) (7.76%) (12.76%)
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Figure 3: RF feature importance scores for 15-minute strategy with no transaction fee
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Note: feature definitions can be found at https://github.com/twopirllc/pandas-ta/blob/main/README.md
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Figure 4: RF feature importance scores for 15-minute strategy with 0.1% transaction fee
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Note: feature definitions can be found at https://github.com/twopirllc/pandas-ta/blob/main/README.md
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