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Abstract

The cryptocurrency market has rapidly grown in recent times, presenting an interesting
opportunity for algorithmic trading. This study examines the profitability of algorithmic
trading strategies devised through machine learning and combines them into an Ensemble
Voting strategy. The models are tested and validated over two subsets of data during 2017-
2018 and 2020-2021 with 5-, 15-, and 30-minute data frequencies. For each frequency, the
most important features are selected through an iterative procedure called Boruta. The
performance of these trading strategies is measured against a Buy-and-Hold strategy to
find whether algorithmic strategies can beat the market when considering 0.1% transaction
costs and when neglecting them. Our analysis shows that while the strategies can generate
high returns without transaction fees, they cannot be shown to produce significantly higher

returns than the Buy-and-Hold strategy when transaction costs are imposed.
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1 Introduction

Cryptocurrencies find their roots in 2008 when a pseudonymous developer Satoshi Nakamoto de-
scribes the first cryptocurrency in the original Bitcoin whitepaper (Nakamoto, 2019). Nakamoto
proposed a distributed digital ledger, based on technology that is now often referred to as a
blockchain. A blockchain is a decentralized network based on cryptographic protocols, enabling
cryptocurrencies to be used and trusted as a payment system without the need for a central
authority. Bitcoin and many modern cryptocurrencies are built around the core technology
of blockchain, often using modifications and extensions (Yaga et al., 2018). For instance, a
decrease in block time is a modification that is often seen in newer cryptocurrencies, resulting
in faster transaction speeds compared to Bitcoin, which is frequently regarded as slow.

Cryptocurrencies were initially introduced to solve problems that were inherent to traditional
fiat currencies, such as the need for a central authority. However, investors and economists of-
ten regard cryptocurrencies more as interesting investment assets, due to their speculative and
volatile nature (Yermack, 2015). These considerations helped cryptocurrencies gain traction
among investors and academics alike, reflected by the rapid growth of the market in cryptocur-
rencies, e.g., the price of Bitcoin recently surpassed the $50.000 barrier (La Roche, 2021).

Although the advent of machine learning technology has provided promising opportuni-
ties for trading strategies such as High-Frequency Trading (HFT), research on these strate-
gies is mostly being conducted in conventional financial markets. Cryptocurrencies present
an interesting parallel to the financial market, moreover, modern technology makes HF'T for
cryptocurrencies accessible through freely available exchange APIs, e.g., Binance and Bitfinex.
Nonetheless, similar literature on the prediction of cryptocurrency prices at high frequency is
much more sparse. Fang et al. (2020) found that 85% of research on cryptocurrency price
prediction emerged since 2018, indicating that this is still a novel field. They categorized this
research into six distinct aspects of cryptocurrency trading, one of which is at focus in this
study: the emergent trading strategies using machine learning.

The strategies in HF'T revolve around numerical algorithms to predict price movements.
These algorithms exploit computing power to make split-second trading decisions, far quicker
than humans would ever be able to, driving the increase in their popularity. JP Morgan esti-
mated that during peak levels of HFT in 2009, algorithms performed 61% of trading on the US
equity market (Cheng, 2017). Moreover, an influx of media attention is directed at the success

of HFT strategies during periods of market turmoil (Wigglesworth, 2019). This sparked debate
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about whether the widespread use of HFT strategies is healthy for the financial markets on
which they are working. Critics express their concern by arguing that HF T increases volatility
and systemic risk (Biais, Woolley, et al., 2011). On the other hand, supporters argue that it
increases market liquidity and helps price discovery (Brogaard et al., 2014).

Most research on cryptocurrency price prediction is conducted using low-frequency time
horizons, such as a daily frequency. Instead, this study aims to contribute to the understudied
field of HFT strategies for cryptocurrencies, by using sets of high-frequency data to create
distinct algorithmic trading strategies and a combination of them in the form of an Ensemble
Voting (EV) strategy (Dietterich, 2000). The raw minute-level price data is freely obtained using
the API from the cryptocurrency exchange Bitfinex. This study considers data from recent and
earlier time periods, to determine whether results obtained in foregoing years continue to hold
using recent data, now that the cryptocurrency market has evolved in many ways. The final
trading strategies are compared to a Buy-and-Hold (B&H) strategy on a set of evaluation
metrics and their profitability. Unlike similar research, this study tries to resemble a legitimate
trading environment by considering realistic transaction costs. The main objective of this study
is to determine whether an EV classifier can make high-frequency price movement predictions
on cryptocurrencies accurately enough to result in a trading strategy that can outperform a
B&H strategy in the current market.

The remainder of this study is as follows. The Theoretical Framework begins by review-
ing academic literature on the cryptocurrency market and its characteristics, then it focuses
primarily on the current research in the field of HF'T for cryptocurrencies. The Methodology
describes the data set and establishes the statistical framework used throughout this study.
The Results section presents the optimized models and relates their performance against the
benchmark strategy. In the Conclusion, the implications and shortcomings of the findings are

discussed alongside further research interests.

2 Theoretical Framework

2.1 Cryptocurrency characteristics
2.1.1 Functionality as a currency

Cryptocurrencies were introduced to address the shortcomings of regular fiat currencies by
creating a decentralized, unregulated form of payment. Yermack (2015) explained how Bitcoin

exploits cryptography to create a deterministic supply with a regulated growth rate that is
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guarded through mathematical principles. In this manner, no government or any other authority
can alter the predetermined supply of Bitcoin, preventing inflation induced by monetary policy
from governments in financial difficulty.

Dwyer (2015) provided an in-depth overview of the technical requirements for electronic
money to function as a currency, and how Bitcoin achieves these features through its peer-to-
peer, blockchain network. According to Yermack (2015), a well-functioning currency should
satisfy three economic criteria, namely: it should serve as a medium of exchange, a store of
value, and a unit of account. He discussed how Bitcoin fares in these three categories and found
that Bitcoin had too few daily transactions to accommodate for an economy. Then, it becomes
difficult to consider Bitcoin as a store of value and a unit of account due to its high volatility.
High volatility causes the prices of goods in Bitcoin to vary strongly, even within the same day,
making it difficult to express value in terms of Bitcoin. These shortcomings make Bitcoin less
suited to the role of a currency and could be better regarded as a speculative investment asset

(Baek & Elbeck, 2015; Dyhrberg, 2016; Yermack, 2015).

2.1.2 Volatility

When developing a trading strategy, it can be helpful to consider the determinants and mag-
nitude of the volatility of cryptocurrencies. Dwyer (2015) found cryptocurrencies to display
higher volatility than regular stocks, and that the daily volatility is heavily right-skewed, indi-
cating that many days occur where the price of cryptocurrencies is unstable. High-frequency
trading tends to be more effective when the volatility of the commodity being traded is high,
this is signalled by the influx of media attention directed at HF'T strategies during periods of
market turmoil (Wigglesworth, 2019). However, most research on cryptocurrency prediction
uses low-frequency data, such as a daily frequency (Fang et al., 2020). Similar research using
high-frequency data is more sparse, as HFT for cryptocurrencies is a more novel field. This
might make it worthwhile to investigate whether HF'T methods can be successful in the volatile
cryptocurrency markets.

Baur and Dimpfl (2018) analysed asymmetric volatility effects for the 20 largest cryptocur-
rencies using the asymmetric threshold GARCH (TGARCH) model. They concluded positive
price shocks to have a larger increasing effect on the volatility of cryptocurrencies than negative
price shocks, an asymmetric effect that is in contrast with observations in the regular stock
market. Furthermore, their results showed that cryptocurrencies can be characterized as highly

volatile assets that display little correlation with traditional assets. These characteristics could
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provide investors with promising opportunities. For instance, cryptocurrencies might function
as a portfolio diversifier due to the lack of correlation with other assets, moreover, they might

prove valuable in trading strategies because of their high volatility.

2.2 Cryptocurrency trading

Cryptocurrencies have garnered most of their popularity over the last couple of years. Fang
et al. (2020) found that 85% of academic literature on cryptocurrency trading developed since
2018. They provided a comprehensive survey of 126 papers across six distinct research areas
concerning cryptocurrency trading. This section focuses on the existing literature in the field

of trading strategies using machine learning.

2.2.1 Prediction strategies

Chen et al. (2020) compared a set of statistical and machine learning models on their predictive
power when applied to Bitcoin data. The set of statistical models included Logistic Regression
(LR) and Linear Discriminant Analysis (LDA), while the machine learning methods consisted of
Random Forest (RF), Gradient Decision Tree Boosting (GTB), Quadratic Discriminant Anal-
ysis (QDA), Support Vector Machine (SVM), and Long Short-Term Memory neural network
(LSTM). Their models were fitted to both daily and 5-minute frequency data from 2017 to 2019.
The 5-minute data encompassed only price data, while the daily data included also features on
blockchain characteristics and gold spot price. Moreover, their final models were benchmarked
against the similar work of McNally et al. (2018).

Madan et al. (2015) published one of the first academic papers on high-frequency cryp-
tocurrency trading. They employed a Random Forest (RF), and a Generalized Linear Model
(GLM) using 10-minute Bitcoin price data from the first five years after the instalment of Bit-
coin in 2009. Moreover, they created RF, Binomial GLM, and Support Vector Machine (SVM)
models, using daily data on 26 features concerning Bitcoin trading and blockchain characteris-
tics. Similarly, Vo and Yost-Bremm (2020) designed a strategy by adopting an RF model using
five financial indicators derived from Open, High, Low, and Close (OHLC) Bitcoin price data.
These indicators convey information on the trend, momentum, volume, and volatility of the
price. Additionally, the models were fitted using 30 different data frequencies, ranging from 1
minute to 90 days, consisting of data from 2015 to 2017. This allowed them to make inferences
on the optimal trading horizon. Finally, they compared the optimal configurations of RF to a

Deep Learning (DL) approach.
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Borges and Neves (2020) took an alternative approach utilizing machine learning algorithms
when constructing a trading strategy. They constructed an Ensemble Voting (EV) strategy by
taking the unweighted average of four trading signals produced by individual models. The EV
consists of two linear and two non-linear models; LR and SVM, GTB, and RF respectively.
The hyperparameters of these algorithms are optimized using a grid search with negative log-
loss as the scoring metric, except for the SVM, which cannot produce this metric naturally.
They argued that negative log-loss, which also considers the probability estimate along with the
predicted label, is suitable because investment strategies benefit from predicting the correct price
movement with high confidence. The data used in their study consists of 1-minute data on 100
cryptocurrency pairs, traded on Binance from 2017 until 2018. The EV and individual models
were fitted to both the original data and various resampled versions of the original data. In line
with this approach, Sebastiao and Godinho (2021) constructed multiple EV strategies consisting
of 6 models, namely the regression and classification counterparts of a linear regression model
based on Ordinary Least Squares (OLS), RF, and SVM. Three EV strategies were constructed
by requiring four, five, or six of the individual models to agree on a trading decision. Instead
of using high-frequency data, Sebastiao and Godinho (2021) opted to use daily data from 2015-

2019, combining trading information and blockchain characteristics.

2.2.2 Performance and returns

Chen et al. (2020) found that the final machine learning models achieved an average accuracy
of 62.2%, significantly higher than the 53.0% average accuracy of the statistical methods. The
best performing machine learning model was a Long Short-Term Model (LSTM), which achieved
an accuracy of 67.2%, outperforming the benchmark LSTM model created by McNally et al.
(2018). Neither study reports on the profitability of the final strategies, nor do they consider
transaction costs. The same holds for Madan et al. (2015), they do not report on the final
profitability of their RF and GLM strategies. They discovered the RF model to outperform
the GLM model in terms of sensitivity, specificity, precision, and accuracy, with the RF model
obtaining an accuracy of 57.4%. Both Chen et al. (2020) and Madan et al. (2015) concluded
that statistical methods performed better when applied to low-frequency data, while machine
learning methods performed better when using high-frequency data.

Vo and Yost-Bremm (2020) measured the performance of their models not only by evaluation
metrics on the movement predictions, but also report on the returns of their trading strategies.

Returns are calculated by simulating a trading environment using the out-of-sample test data.
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Their findings show that the RF model performs best when using a 15-minute data frequency and
outperformed its DL counterpart. However, they did not go into depth on the exact structure
of the DL model, making it difficult to judge their RF model on its comparative performance.
The optimal RF model attained an F1-score of 97.5% on both buy and sell decisions and yielded
657.45% annualized average returns over 3 years with a Sharpe Ratio of 8.22, transaction costs
not considered. Furthermore, their findings showed that there is a significant drop in accuracy
when the frequency is increased beyond 30-minute intervals.

Borges and Neves (2020) compared their EV and individuals models to a benchmark B&H
strategy. Their average results for all markets and resampling methods showed that the EV
classifier reported a return on investment of 615% over the period 2017-10-30 to 2018-10-30
and that it outperformed the individual models in most metrics, indicating that combining
machine learning methods can be valuable for trading strategies. The individual models were
also shown to outperform a B&H strategy in terms of most evaluation metrics. They noted
that the profitability of their strategies is likely excessive, attributed to the fact that there is

an absence of a bid-ask spread in the data.

2.3 Feature engineering

Machine learning models are trained on features, also known as explanatory variables, to predict
the outcome of the target variable. Hawkins (2004) discussed a myriad of problems, such as
overfitting and slow training speed, that arise when too many features are included in a predic-
tive model. This raises questions about which features to include when developing a machine
learning model. Kursa et al. (2010) designed Boruta, a novel feature selection algorithm. The
method iteratively determines what features bring enough explanatory power to the model by
comparing them to randomly generated features. They showed that this approach is statisti-
cally grounded and allows for a more efficient selection of relevant features. Chen et al. (2020)
and McNally et al. (2018) utilized Boruta to discern the most important features for their cryp-
tocurrency price prediction models. On the other hand, studies that did not rely on a numerical
method often used existing results or common practices from financial literature to decide on

what features to include (Borges & Neves, 2020; Nakano et al., 2018; Vo & Yost-Bremm, 2020).
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3 Methodology

3.1 Data collection and preprocessing

The data is collected from the cryptocurrency exchange Bitfinex, where historical data on the
currency pair BTC/USD from 2013-04-27 to 2021-05-03 is extracted at the 1-minute level, the
highest granularity provided by the Bitfinex API. The 1-minute data set is resampled to obtain
data of 5- and 15-minute frequencies. It should be noted that it is also possible to query lower-
frequency data directly from the API, however, resampling is more efficient and allows for any
desired data frequency longer than 1-minute. The OHLC prices are significant up to 5 digits.
Furthermore, a row from the candlestick data extracted through the API has six columns and

is structured as follows;
(Unix timestamp - Open - Close - High - Low - Volume).

The raw data consists of data from 2013-04-27 to 2021-05-03, which is separated into two subsets
of data, the first period concerns 2017-01-01 to 2018-05-01, while the second regards 2020-01-01
to 2021-05-01. These subsets are used to compare the profitability of the final trading strategies
during two different epochs, and to see whether the market has become more efficient over the
years. The closing price of Bitcoin over these intervals is displayed in Figure 1 and Table 1

contains descriptive statistics on the raw data and the data subsets.

Figure 1: Closing price of Bitcoin in both subsets

In the case of a missing value, the complete row for the concerning timestamp is missing
in this data. A missing value occurs when the API failed to record data at the time. There
are many missing values in the early years of interval, during this time a missing value often
means there were simply no trades on the exchange at that point in time. Missing values are a

lot less prevalent in recent years since cryptocurrencies are now continuously being traded. To
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Table 1: Descriptive statistics on raw data and data subsets at 1-minute frequency

27 April 2013
Sample period b

1 January 2017

1 January 2020

-3 May 2021 - 1 May 2018 — 1 May 2021

# 1-min observations 4,216,320 698,401 699,841
# missing observations 909,520 21,178 10,904
Closing price (USD)

Mean 5,947.80 5,398.52 20,209.23

Standard deviation 10,153.35 4,398.28 17,094.83

Maximum 64,787.76 19,891.00 64,787.76

Minimum 63.04 744.48 4,030.10
Volume (BTC)

Total volume 63,251,207.14 19,881,380.68 4,237,735.74

Mean volume per minute 14.98 28.14 6.05

impute the missing data, forward fill imputation is used, which means the observation from the

preceding timestamp is copied to the current one, similar to Vo and Yost-Bremm (2020).

3.1.1 Feature Selection and Engineering

Boruta (Kursa et al., 2010), was used to select the features to be included in the models. The
procedure starts by generating copies of all features, and shuffling them to remove all correlation
with the dependent variable. That is, the n x k matrix X, containing n observations and k
features, is extended to the n x 2k matrix X. Let z;, #; denote the column vectors of their
respective matrices, then the column vectors Z; are constructed as follows using the random
uniform shuffling function v(-),

3 — x; forie{l,...,k}, )

v(wi—g) forie{k+1,...,2k}.

The resulting matrix X is used to train an RF classifier for a predetermined number, m,
iterations and at each iteration, j, the feature importance scores; Z;; for i € {1,... k},
are compared to the maximum feature importance scores of the random features; Z}nax =
max{Zy1j,---,Zokj}- Let I(-) and E(-) denote the indicator function and the expected value

operator, respectively, and [ < m is the current number of iterations. If we assume the following
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under Hy;

l
Wi =" 1(Zi; > 27) © BIN(I,p = 0.5), (2)
j=1

then the following hypotheses can be tested using two one-sided tests of equality at each itera-

tion,

Hy: E(W;) = EW;) > -, (3)

H,:
Hy: E(Wl) =—, Hy: E(Wl) < (4)

PO~ b |~

If the hypothesis in equation (3) is rejected, the feature is deemed important, if the hypothesis
in equation (4) is rejected, the feature is rejected and Z; dropped from X. When hypotheses
(3) and (4) are both not rejected, the feature is flagged tentative, however, retained. After
every iteration, the matrix X is reconstructed using the remaining features and the hypothesis
tests are performed again. This is repeated for the predetermined number of iterations and
leaves a subset of features to be included in the model. The p-values of these tests should be
corrected for multiple testing as the procedure is executed on many features simultaneously,
this study employed the package BorutaPy, which utilizes the Benjamini-Hochberg correction
procedure (Benjamini & Hochberg, 1995). The procedure can be made more or less conservative
by changing the confidence level, o, of the test, which is set to a = 0.05 in this study.

Boruta is employed on a feature set of 192 financial indicators available through the Pan-
das TA package in Python'. Some available indicators are prevalent in existing literature for
cryptocurrency trading, such as the Relative Strength Index (RSI), Stochastic Oscillator (SO),
and Moving Average Convergence-Divergence (MACD), among others (Borges & Neves, 2020;
Nakano et al., 2018; Vo & Yost-Bremm, 2020). Features that were still deemed tentative after
a hundred iterations are decided not to be included, as a simple model is generally preferred
(Hawkins, 2004). Furthermore, all continuous features are scaled using min-max normalization,

that is, the normalized value of x is given by:

T —minzx
Tnorm — " .
maxz — minz

'The list of all 192 indicators can be found here: https://github.com/twopirllc/pandas-ta/blob/master/
README.md
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3.2 Mathematical framework
3.2.1 Problem statement

Let p§ denote the closing price of a cryptocurrency at time ¢t and h € {1,...,2x7x24x4 = 1344}
the time in two weeks at 15-minute frequency. Then the price prediction problem concerns the

prediction of yryp41 € {0,1}, where

Yernr1 =1 (Pianir > (L+7)pfes) - (6)

Let 7 denote the relative transaction costs, this study considers 7 € {0,0.001} equivalently 0%
and 0.1%. The model at time ¢t is trained on the n x k window matrix X;, with k features
and a window size of eight weeks, i.e., 5376 observations at 15-minute frequency. The model
is retrained at the end of a block of two weeks using the next window, that is, the first two
weeks of data in X; are dropped and the new two weeks of data are added to construct the next
window matrix X;41344, in the case of a 15-minute frequency. The same structure is applied
to 5-minute and 30-minute data, which results in window sizes of n = 16128 and n = 2688
respectively.

Once the model is trained on Xy, it can be deployed at time ¢ + h to predict the next
movement of the closing price, §:1pyr1- Then a trading strategy is constructed as follows; take
or hold a long position if ¢;1p11 = 1, and relinquish the long position or stay out of the market
if §44n+1 = 0. It should be noted that shorting opportunities are not available on the market
from which the data has been gathered, and is therefore not considered in the trading strategy.

For all three models discussed below in sections 3.2.2-4, a grid search with cross-validation
is employed to find the optimal combination of hyperparameters. Hyperparameters are settings
that dictate the learning process of the algorithms and can be adjusted in an attempt to find the
best configuration for the prediction problem at hand. The cross-validation procedure for the
grid search is structured in conformity with the prediction strategy described at the beginning
of this section. That is, in each iteration of cross-validation eight consecutive weeks are used as
training data, and the ninth and tenth weeks serve as the validation set. Five iterations of this
concept are illustrated in Figure 2, every dot represents a block of two weeks. The procedure is
applied over the first 18 weeks of data, which means that five iterations of cross-validation are
performed for each configuration of hyperparameters.

Finally, the three models with optimized configurations are combined into an EV classifier,

through a process called hard-majority voting. Hard-majority voting is a voting process where
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the class with the majority of votes is yielded as the final prediction. In our case, the EV
classifier yields the price movement prediction that is produced by two out of the three individual
models. Additionally, a soft-majority voting approach is employed for the 15-minute strategy.
Soft-majority voting takes the average of the probability estimates produced by the individual
models and predicts the future price movement with the highest average probability. Platt
scaling is used to produce probability estimates for the SVM model discussed in section 3.2.4,

as SVM models cannot produce probability estimates naturally (Platt et al., 1999).

Figure 2: Cross-validation structure for a sliding window model

Time
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The hyperparameter space used in the grid search for each of the models can be found in
Table 2, the parameter space for all numeric parameters are determined through trial and error,
such that the optimal outcomes are not on the borders of the parameter space. Moreover, this
grid search performs its evaluation of the models based on a scoring metric. This study opts to
use the precision score on buy decisions as the scoring metric for all models, as it is important
to predict the positive price movements with high confidence and limit the amount of losing
trades. The precision score is defined as the ratio of true positives and the sum of true positives
and false positives, which can be formalized as follows:

__tp
tp+ fp

pr

The main objective of this study is to make inferences on the following hypotheses. Let
E(Rj) denote the expected weekly return on investment of a certain algorithmic trading strategy,
s, and let E(Ry,) denote the expected weekly return on investment of the B&H strategy. The

hypotheses can then be formalized as follows:
Hy: E(Rs) = E(Ry), H,:E(Rs)> E(Ry), (7)

which can be tested using the Wilcoxon Signed-Rank test on the series of weekly returns of the
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trading strategies (Wilcoxon, 1992). This test is performed for 48 hypotheses, each hypothesis
considers a trading strategy based on a different combination of time period, transaction costs,
data frequency, and type of algorithm. As multiple hypotheses are tested simultaneously, the
resulting p-values should be corrected for multiple testing. This study employs the Benjamini-
Hochberg correction procedure (Benjamini & Hochberg, 1995), controlling the false discovery
rate (FDR) at 5%.

Table 2: Subspace of values for grid search with cross-validation

Algorithm Hyperparameter Space of values
Number of trees 250
Number of features per tree vnum. features
Random Forest Min. number of obs. to split a node {11,101,501,1001}
Max. depth of each tree {5, 10, 20,50}
Splitting measure Gini impurity
Scoring metric precision
Regularization Iy
Logistic Regression A {0.1,1, 10, 100, 1000, 10000}
Intercept Included
Scoring metric precision
A {0.1,1, 10, 100, 1000}
Support Vector Machine Kernel Linear
Scoring metric precision

3.2.2 Random Forest

A Random Forest is an ensemble learning method consisting of a collection of individual decision
trees (Breiman, 2001). The decisions made by each decision tree are aggregated to yield a final,
more robust prediction. The individual decision trees are not trained on the entire data set,
instead, different samples are created using Bootstrap Aggregation (bagging) (Breiman, 1996).
A bootstrap sample is generated by taking random samples with replacement from the original
data. Then each decision tree is trained on a different bootstrap sample, furthermore, the
individual trees do not have access to the complete set of features either. Namely, in each
decision tree, a random subset of features is used, forcing the individual decision trees to create

different splitting criteria from each other.
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3.2.3 Logistic Regression

Binomial Logistic Regression models a binary target variable, by assuming a linear relationship
between the features, xy; for i € {1,...,k}, and the log-odds of the target variable, y; € {0, 1},

written in terms of the conditional probability (Hosmer Jr et al., 2013),

Py =1z) | k g
1%<1—P@ﬁ:H%Q-4%+2;@MF:%5. @®)

The above can be used to arrive at an expression for the conditional probability, in terms of the

logistic sigmoid function, o(-).

exp(xfﬁ) B 1
exp(zf8) +1 1+ exp(—a] B

Py, = 1|zy) = ] = o(xz/ B). (9)

The expression in equation (9) can be used to construct the negative log-likelihood of the sample
JT"t - {ylv"'7yt}U{$11a"'7xtk‘}7
n
—log £(fo, - B Fi) == {y log (a(af 8)) + (1 = yi) log (1 — o(af B))} . (0)
t=1
This expression can be minimized using computerized algorithms. An [; or ls regularization

function, R(-), can be included to reduce overfitting (Hoerl & Kennard, 1970; Tibshirani, 1996).

3.2.4 Support Vector Machine

A Support Vector Machine (SVM) (Cortes & Vapnik, 1995), is a machine learning algorithm
that can be used for classification and regression tasks. SVM attempts to separate a set of data
points using a hyperplane, which is defined to maximize the distance to the nearest point of
each group. Let w € R* denote the normal vector of the hyperplane, and let b € R be the
offset from the origin. The hyperplane then corresponds to the vectors, z € R¥, satisfying the

equation;
wlz—b=0. (11)

Contrary to previous algorithms, SVM defines the labels of the target variable as —1 for the
negative class and 1 for the negative class, such that y € {—1,1}. In optimizing the algorithm,
the normal vector, w, and offset, b, are chosen to maximize the distance from the hyperplane to
the data points, z; € R* corresponding to the target variable y;. The algorithm achieves this by

maximizing the margin, which is defined as the distance between the maximum and minimum
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margin hyperplane, satisfying respectively:
wlz—b=1, wlz—b=-1. (12)

Geometrically the margin can then be shown to be equal to ﬁ, now maximizing the margin is
clearly equivalent to minimizing ||w||. However, the data is often not perfectly linearly separable,
in this case, the hinge loss function, L(y;) = max{0,y;(w”z; — b)}, can be introduced. This

leads to the minimization problem with regularization parameter A € R,
1 n
in - Awl?+ =) L(y). 13
min - Aflwll” + ”tz—; (92) (13)

This variation uses a so-called linear kernel, however, SVM can be extended easily to non-linear
classification by using a different kernel, also known as a kernel trick (Bishop, 2006). This study
considers only a linear kernel due to the increase in computational complexity when employing

a kernel trick and the size of the data set.

3.3 Backtesting

To evaluate the algorithms on their profitability, a backtesting framework is employed using
Backtrader? for Python. This framework allows us to simulate a trading environment by letting
the algorithms trade on historical data. The trading environment can be customized to include
transaction costs and what price the orders should be matched against, i.e., the opening price
of the next time interval or the closing price of the current interval, this study uses the former
as it is not realistic to trade on the closing price of an interval after it has already passed. This
study compares the performance of the final strategies using different values for the relative
transaction costs, namely 7 € {0,0.001}, with trading strategies based on g-minute frequencies,
with g € {5,15,30}. The performance of these models is measured using the unseen test set
from both 2017/18 and 2020/21, containing the remaining 51 weeks of data that follow after
the 18 weeks used in the grid search over the hyperparameters.

The framework provides a log of the trading history containing the prices at which the
orders were filled, along with the net and gross profit of each trade. Where the net profit is
calculated by subtracting the transaction costs of both buying and selling from the gross profit.
Furthermore, it provides performance metrics on a trading strategy, s, such as annualized weekly
returns, R?, defined as:

R = ((1 4Ry - 1) , (14)

https://www.backtrader.com/
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where R; denotes the mean weekly return on investment of trading strategy s. Now, the

annualized Sharpe ratio, S¢, can be constructed as:

R? — RY
S = ———>~, (15)

oy
where R} denotes the annual risk-free return and 6% denotes the annualized sample standard
deviation of the weekly returns. In this study, an annual risk-free return of R} = 1% is used.
Other metrics include the maximum drawdown (MDD), which is the maximum observed de-

cline in portfolio value from a peak to a trough. The maximum drawdown for a period of n

observations can be formalized as follows:

MDD,, = max ( max <V"_Vt>>, (16)
te{l,...,n} \ he{l,..t—1} Vi

with V; denoting the value of the portfolio of a trading strategy at time ¢. MDD is used as a

measure of the risk involved in a trading strategy. Furthermore, the Fj-scores on both buy and
sell decisions are reported, which is defined as the harmonic mean of precision, pr = tp/(tp+ fp),
and recall, re = tp/(tp+ fn), where tp, fp, tn, fn denote the number of true/false positives and
negatives respectively, then the Fj-score can be formalized as follows:

) .
_2‘pfr re

F = = .
! pr—1 4 re-1 pr—+re

(17)

Lastly, the win rate and the time in the market are reported by the backtesting framework,
these are defined respectively as the percentage of profitable trades and the amount of time a
long position is held. The win rate considers transaction costs when determining whether a
trade is winning or not. That is, a trade is considered winning when it is profitable after the
subtraction of the transaction costs of both buying and selling. The time in the market can be
used as a measure for the aggressiveness of a trading strategy, such that a lower percentage of

time spent in the market indicates that a strategy is more conservative.

4 Results

Table 3 summarizes the performance at a 15-minute data frequency of all three individual mod-
els, the ensemble classifier, and a B&H strategy when no transaction costs are considered. As
shown, all algorithmic strategies outperform the B&H strategy over the test set in 2017/18. The
RF model performed best in 2017/18, achieving annualized returns of 3643% and an annualized

Sharpe ratio of 4.58. While RF is outperformed in terms of returns by the B&H strategy dur-

Jacco Broere PAGE 18 oF 31



UNIVERSITY OF AMSTERDAM
X

Table 3: Results of all strategies using a 15-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 50.54% 52.27% 51.87% 51.80% 51.83%
(50.65%)  (52.77%)  (52.42%)  (52.26%)  (52.40%)
Fy-score (Buy) 67.15%  50.45% 50.10% 50.23%  50.04%
(67.24%)  (54.27%) (54.18%)  (55.46%)  (54.97%)
Fi-score (Sell) 0.00% 53.97% 53.51% 53.27% 53.49%
0.00%)  (51.17%)  (50.52%)  (48.56%)  (49.52%)
Precision (Buy) 50.54% 53.07% 52.62% 52.53% 52.58%
(50.65%)  (53.25%)  (52.88%)  (52.57%)  (52.77%)
Annualized returns (%) 795.86%  571.52% 295.11% 213.89% 280.62%
(408.34%) (3642.87%) (1004.26%) (814.17%) (803.27%)
Annualized Sharpe ratio (%) 3.51 4.43 3.33 2.79 3.22
(2.00) (4.58) (3.30) (3.00) (3.03)
Win rate (%) N/A 69.52% 70.38% 68.57% 69.73%
N/A (64.51%) (70.49%)  (69.73%)  (70.19%)
Maximum Drawdown (%) 29.97% 20.26% 25.35% 25.89% 25.36%
(69.54%)  (38.00%)  (38.48%)  (54.74%)  (46.05%)
Time in market (%) 100% 45.67% 45.92% 46.30% 45.88%
(100%)  (52.61%) (53.16%)  (56.52%)  (55.03%)

Table 4: Results of all strategies using a 15-minute frequency and a 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 34.14% 66.15% 62.99% 63.41% 63.43%
(41.20%)  (59.01%) (58.05%) (58.03%)  (58.14%)
F-score (Buy) 50.90% 11.93% 28.97% 26.94% 27.11%
(58.35%)  (24.23%)  (28.83%)  (28.80%)  (28.64%)
Fi-score (Sell) 0.00% 79.05% 74.97% 75.59% 75.59%
(0.00%) (71.91%)  (70.26%)  (70.25%)  (70.39%)
Precision (Buy) 34.14% 53.34%  42.00% 42.31% 42.43%
(41.20%)  (50.80%) (47.86%)  (47.82%)  (48.10%)
Annualized returns (%) 795.67% 20.90% -67.47%  -66.68%  -65.01%
(407.03%)  (-33.68%)  (-64.45%) (-61.38%) (-57.05%)
Annualized Sharpe ratio (%) 3.51 0.90 -3.44 -3.43 -3.32
(2.00) (-0.48) (-1.62)  (-1.25)  (-1.09)
Win rate (%) N/A 53.90% 44.36% 45.06% 45.48%
N/A (57.05%) (51.76%) (52.85%)  (52.85%)
Maximum Drawdown (%) 29.97% 16.42% 62.07% 62.03% 60.80%
(69.53%)  (53.42%) (70.94%) (73.15%)  (71.42%)
Time in market (%) 100% 4.30% 17.97% 15.94% 16.03%
(100%) (12.90%)  (17.75%) (17.75%)  (17.46%)
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ing 2020/21, it performs better than the B&H strategy in terms of Sharpe ratio and Maximum
Drawdown. RF and B&H attain an annualized Sharpe ratio of 4.43 and 3.51 respectively during
2020/21. These findings suggest that the RF strategy could be considered less volatile than a
B&H strategy when transaction costs are ignored.

Table 4 contains the performance metrics of the 15-minute frequency strategies when trans-
action costs of 0.1% are included. The table shows that the Fj-score on the buy decision dropped
once the models need to predict price movements larger than the 0.1% threshold imposed by
the transaction costs. Namely, the average Fij-score on buy decisions dropped from 52% to an
average of 26%. In both time periods, all algorithmic trading strategies now attain negative
returns apart from the RF strategy in 2020/21, which attained annualized returns of 20.9%
and an annualized Sharpe ratio of 0.90. Moreover, in Table 6—9 in the appendix, results can
be found for 5-minute and 30-minute frequencies. As shown, none of the algorithmic at 5- and
30-minute frequencies are profitable when transaction costs of 0.1% are factored in, except for
the 5-minute RF strategy in 2017/18. In contrast, the 5-minute strategies are highly profitable
when no transaction fees are imposed. Then, the most profitable strategy, RF, attains returns
of 322932% and 1149% in 2017/18 and 2020/21 respectively. The disparity between the inclu-

sion and exclusion of transaction costs could be attributed to the small profit margins that are

Table 5: Results of Wilcoxon Signed-Rank test for hypothesis in equation (7)

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

No transaction costs 0.1% transaction costs
Test statistic p-value Test statistic p-value
5-minute frequency
RF 499 (799) 0.377 (<0.001*) 199 (355) 1.000 (0.923)
LR 298 (684) 0.983 (0.005*) 186 (343) 1.000 (0.942)
SVM 405 (657) 0.794 (0.013*) 201 (332) 0.999 (0.956)
EV 432 (687) 0.690 (0.005%) 212 (353) 0.999 (0.926)
15-minute frequency
RF 430 (612) 0.698 (0.047) 229 (300) 0.998 (0.982)
LR 333 (464) 0.955 (0.543) 142 (259) 1.000 (0.995)
SVM 316 (490) 0.971 (0.419) 154 (261) 1.000 (0.995)
EV 320 (473) 0.968 (0.500) 158 (265) 1.000 (0.994)
30-minute frequency
RF 414 (487) 0.762 (0.433) 184 (279) 1.000 (0.990)
LR 406 (401) 0.791 (0.649) 191 (317) 1.000 (0.970)
SVM 464 (391) 0.543 (0.839) 199 (283) 1.000 (0.989)
EV 463 (399) 0.548 (0.814) 191 (308) 1.000 (0.977)
Note: *significant after Benjamini-Hochberg correction
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exploited by high-frequency strategies. These margins are abolished by the 0.1% transaction
fee, often resulting in an unprofitable strategy.

In Table 4, it is noteworthy that compared to the other three algorithmic trading strategies,
RF is more than three times as conservative, spending only 4.3% of time in the market in
2020/21 as opposed to an average of 16.6% among the other three strategies. The results also
show that after the introduction of transaction costs, the models have become more conservative,
namely, the average time spent in the market has dropped from 48% to 15% across both time
periods and each of the frequencies. Table 10 and 11 in the appendix contain the results of
using soft-majority voting at 15-minute frequency. Table 11 shows that the EV strategy now
attains returns of 118% in 2017/18 with 0.1% transaction costs, in contrast with the negative
returns of the hard-majority voting EV strategy in the same period. Furthermore, the table
shows that the soft voting EV strategy has become more conservative, spending 13% and 5%
of time in the market during 2017/18 and 2020/21 respectively.

Boruta selected 48, 40, and 30 features for the 5-, 15-, and 30-minute data frequencies
respectively. Figure 3 and 4 in the appendix show the importance scores for the features that
were selected by Boruta at 15-minute frequency, for the inclusion and exclusion of transaction
costs. Both figures show, among others, two momentum indicators from the Elder-Ray Index to
be important, namely the Bull Power (BULLP) and Bear Power (BEARP). Further explanation
on all indicators can be found in the Pandas TA documentation?.

Table 5 contains the test statistics and corresponding p-values of testing the main hypothesis
in equation (7) using a Wilcoxon Signed-Rank test (Wilcoxon, 1992). The test is performed on
all four strategies at each of the frequencies, g € {5,15,30}, for both time periods. Findings
revealed that after correcting the p-values using the Benjamini-Hochberg procedure, there is
not enough statistical evidence to reject the null hypothesis of equal expected returns between
the B&H and any of the alternative strategies when transaction costs of 0.1% are imposed at a
5% confidence level. However, when transaction costs are excluded, there is enough statistical
evidence to reject the null hypothesis of equal expected returns in favour of the alternative

hypothesis of higher expected returns for all four strategies based on a 5-minute frequency.

3Explanation on indicators can be found here: https://github.com/twopirllc/pandas-ta/blob/master/
README.md
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5 Conclusion

This study examined the profitability of multiple trading strategies based on machine learning
algorithms, namely Random Forests, Logistic Regressions, and Support Vector Machines. Along
with a combination of these algorithms in the form of an Ensemble Voting classifier. The
performance of the trading strategies is measured against test samples from a recent and earlier
timeframe, namely in 2017/18 and 2020/21, to examine if the cryptocurrency market has evolved
and whether the results from research in the foregoing years continue to hold.

This work contributed to the understudied field of high-frequency algorithmic cryptocur-
rency trading, by exploring strategies based on data frequencies up to 30-minutes, in contrast
to similar studies that are often conducted using lower frequency data. The subset features that
are most relevant at each data frequency are determined through the iterative feature selection
tool Boruta. The selected features are used in a sliding window model to predict a binary target
variable, the movement of the closing price in the next interval.

By means of quantitative analysis through a backtesting framework for the algorithmic
strategies, it can be concluded that a high-frequency trading strategy based on machine learning
could be employed as a profitable investment strategy. However, based on a statistical test,
the expected returns of these strategies are not significantly higher than the returns from an
elementary Buy-and-Hold strategy when transaction costs are imposed on the model in either
testing period. In a theoretical scenario without transaction costs, strategies based on 5-minute
data can be shown to have significantly higher returns than the Buy-and-Hold strategy during
2017/18. Furthermore, from the analysis, it can be concluded that the exploitability of the
cryptocurrency market through algorithms has declined over time, as the models have been
found to perform worse in 2020/21 compared to 2017/18.

There is no clearly distinguishable winner among the machine learning models in terms of
performance, neither can we conclude that the Ensemble Voting strategy performs better than
the individual models. The comparison between the behaviour of the trading strategies when
considering transaction costs and neglecting them provides insight into how the behaviour of
the algorithms changes when a threshold is imposed on the target variable. We conclude that
the algorithms become more conservative as trades with small margins become unprofitable
once transaction costs are considered, leaving the models to predict an upwards movement only
when a relatively large price increase is expected.

Several limitations have been identified. Namely, this study was not able to deploy an
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exhaustive grid search over the hyperparameters of each model due to the accompanied compu-
tational complexity, nor was the possibility of a strategy based on a 1-minute frequency explored
for the same reason. However, a 1-minute strategy would likely not be profitable when transac-
tion costs are considered, as the profit margins for a 1-minute frequency would be even smaller
than for a 5-minute strategy, which is already unprofitable with the inclusion of transaction
costs. Moreover, the cryptocurrency market had an increasing trend in both testing periods,
indicated by the high returns of the B&H strategy. Smaller subsets of data with varying market
conditions might be considered to find out how robust the trading strategies are when being
tested in a bearish market. For the SVM model, non-linear kernels have not been considered
due to the increased computational complexity, exploring the performance of these non-linear
kernels might be of future research interest. Lastly, the soft-majority voting approach was only
applied to the 15-minute strategies. However, the increase in performance shows that it could

prove promising for future research.
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Appendix

Table 6: Results of all strategies using a 5-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 49.90% 52.93% 51.71% 51.82% 52.19%
(50.21%)  (52.52%)  (51.81%) (51.76%)  (51.84%)
F)-score (Buy) 66.58% 47.48% 47.92% 45.14% 46.35%
(66.85%)  (51.03%) (54.41%)  (53.90%)  (54.20%)
Fy-score (Sell) 0.00% 57.36% 55.00% 57.04% 56.88%
(0.00%)  (53.92%)  (48.89%) (49.41%)  (49.24%)
Precision (Buy) 49.90% 53.57% 51.89% 52.27% 52.67%
(50.21%)  (52.91%)  (51.82%) (51.81%)  (51.87%)
Annualized returns (%) 804.23% 1149.4% 339.5% 505.0% 653.1%
(398.22%) (322932%) (12720%) (7772%)  (13893%)
Annualized Sharpe ratio (%) 3.52 5.50 3.44 4.15 4.65
(1.98) (9.92) (6.06) (5.58) (6.17)
Win rate (%) N/A 65.79% 62.47%  62.98%  64.11%
N/A (59.49%) (59.36%)  (60.29%)  (59.58%)
Maximum Drawdown (%) 30.51% 22.02% 26.52% 23.01% 22.83%
(69.50%)  (27.51%)  (42.06%) (39.74%)  (43.32%)
Time in market (%) 100% 39.72% 42.80% 37.93% 39.21%

(100%) (46.76%) (50.86%)  (49.79%)  (50.29%)

Table 7: Results of all strategies using a 5-minute frequency and 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 24.18% 75.82% 74.15% 75.38% 75.39%
(33.91%)  (66.38%) (59.17%)  (59.14%)  (59.21%)
Fy-score (Buy) 38.95% 7.02% 16.59% 10.73% 11.11%
(50.65%)  (8.84%)  (29.31%)  (29.87%)  (29.19%)
F-score (Sell) 0.00% 86.11% 84.71% 85.72% 85.72%
(0.00%) (79.39%) (71.20%)  (T1.17%)  (71.36%)
Precision (Buy) 24.18% 50.13% 37.75% 43.57% 43.90%
(33.91%)  (54.94%) (35.49%) (35.73%)  (35.49%)
Annualized returns (%) 795.46% -38.57% -62.76% -50.46% -42.82%
(396.92%) (48.82%)  (-17.73%) (-44.73%) (-5.18%)
Annualized Sharpe ratio (%) 3.52 -2.22 -3.83 -2.52 -2.03
(1.98) (1.28) (:0.08)  (-0.75)  (0.17)
Win rate (%) N/A 51.14%  38.88%  A7.45%  49.05%
N/A (54.60%) (52.26%)  (50.53%)  (52.36%)

Maximum Drawdown (%) 30.45% 42.20% 60.90% 53.63% 51.04%
(69.58%)  (38.98%) (57.38%) (68.23%)  (56.22%)

Time in market (%) 100% 1.82% 6.81% 3.40% 3.50%
(100%) (2.97%) (19.21%)  (19.71%)  (19.05%)
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Table 8: Results of all strategies using a 30-minute frequency and no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 51.13% 52.81% 52.39% 53.17% 53.15%
(50.90%)  (52.00%) (52.35%) (52.22%) (52.23%)
Fi-score (Buy) 67.67% 49.24% 48.32% 56.88% 52.69%
(67.46%) (49.93%)  (54.31%)  (53.60%)  (54.40%)
F-score (Sell) 0.00% 55.92% 55.86% 48.76% 53.61%
(0.00%)  (53.90%)  (50.20%)  (50.75%)  (49.84%)
Precision (Buy) 51.13% 54.72% 54.30% 53.74% 54.48%
(50.90%)  (53.22%)  (53.04%)  (52.99%)  (52.90%)
Annualized returns (%) 793.42% 500.35% 597.96% 1017.95% 912.21%
(409.72%)  (711.56%) (541.47%) (192.21%)  (250.54%)
Annualized Sharpe ratio (%) 3.51 4.10 4.79 4.65 4.83
(2.00) (2.77) (2.60) (1.69) (1.88)
Win rate (%) N/A 71.57% 73.16%  72.33% 72.99%
N/A (63.21%)  (68.73%) (68.56%)  (68.55%)
Maximum Drawdown (%) 28.92% 20.48% 15.78% 24.98% 21.76%
(69.53%)  (52.37%)  (54.70%)  (52.13%)  (56.60%)
Time in market (%) 100% 41.82% 40.99% 53.15% 47.87%
(100%)  (44.97%)  (53.39%)  (52.08%)  (53.85%)

Table 9: Results of all strategies using a 30-minute frequency and 0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 39.04% 61.61% 57.02% 58.32% 58.30%
(44.39%)  (55.95%) (55.34%)  (55.21%)  (55.34%)
Fi-score (Buy) 56.15% 16.88% 32.89% 31.65% 31.60%
(61.49%)  (32.55%)  (36.11%)  (35.47%)  (35.67%)
F-score (Sell) 0.00% 75.04% 68.39% 70.02% 70.01%
(0.00%) (67.30%) (65.68%)  (65.70%)  (65.80%)
Precision (Buy) 39.04% 54.51% 42.12% 43.98% 43.94%
(44.39%)  (50.83%) (49.49%)  (49.21%)  (49.48%)
Annualized returns (%) 793.24% -12.28% -9.64% -3.67% -7.66%
(408.40%) (-55.24%)  (-8.19%) (-52.04%)  (-19.26%)
Annualized Sharpe ratio (%) 3.51 -0.43 -0.19 0.01 -0.13
(2.00) (-1.15) (0.17) (-0.80)  (-0.03)
Win rate (%) N/A 56.71%  48.07%  47.31%  47.04%
N/A (55.22%)  (56.29%) (53.66%)  (56.02%)
Maximum Drawdown (%) 28.93% 26.82%  30.14% 29.75% 29.77%
(69.52%)  (67.39%)  (41.23%) (51.28%)  (42.98%)
Time in market (%) 100% 7.15% 25.00% 21.95% 21.92%
(100%) (20.91%)  (25.50%)  (25.01%)  (25.01%)
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Table 10: Results of all strategies using a 15-minute frequency with soft-majority voting and
no transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 50.54% 52.27% 51.87% 52.52% 52.37%
(50.65%)  (52.77%) (52.42%) (52.28%) (52.85%)
Fy-score (Buy) 67.15% 50.45% 50.10% 49.25% 49.79%
(67.24%) (54.27%) (54.18%) (54.16%) (54.57%)
Fy-score (Sell) 0.00% 53.97% 53.51% 55.40% 54.69%
0.00%)  (5L.17%)  (50.52%)  (50.24%)  (51.00%)
Precision (Buy) 50.54% 53.07% 52.62% 53.56% 53.28%
(50.65%)  (53.25%)  (52.88%)  (52.74%)  (53.29%)
Annualized returns (%) 795.86%  571.52% 295.11% 130.90% 362.16%
(408.34%)  (3642.87%) (1004.26%) (1210.68%) (3739.55%)
Annualized Sharpe ratio (%) 3.51 4.43 3.33 2.18 3.77
(2.00) (4.58) (3.30) (3.61) (4.64)
Win rate (%) N/A 69.52% 70.38% 66.80% 71.52%
N/A (64.51%)  (70.49%)  (69.77%)  (70.64%)
Maximum Drawdown (%) 29.97% 20.26% 25.35% 24.96% 24.35%
(69.54%)  (38.09%)  (38.48%)  (40.70%)  (35.37%)
Time in market (%) 100% 45.67% 45.92% 43.01% 44.33%
100% (52.61%)  (53.16%)  (53.42%)  (53.12%)

Table 11: Results of all strategies using a 15-minute frequency with soft-majority voting and a
0.1% transaction fee

Results from 2017-2018 in (parentheses) and results from 2020-2021 in no parentheses

Algorithm B&H RF LR SVM EV
Metric
Accuracy 34.14% 66.15% 62.99% 65.21% 65.71%
(41.20%)  (59.01%) (58.05%) (58.08%)  (58.29%)
Fi-score (Buy) 50.90% 11.93% 28.97% 4.21% 13.20%
(58.35%)  (24.23%)  (28.83%) (14.37%) = (22.71%)
F-score (Sell) 0.00% 79.05% 74.97% 78.74% 78.63%
(0.00%) (71.91%)  (70.26%)  (72.25%) (71.44%)
Precision (Buy) 34.14% 53.34% 42.00% 35.06% 48.58%
(41.20%) (50.80%) (47.87%) (45.34%)  (48.00%)
Annualized returns (%) 795.67% 20.90% -67.47% -19.58% -0.16%
(407.03%)  (-33.68%)  (-64.17%) (19.59%)  (118.07%)
Annualized Sharpe ratio (%) 3.51 0.90 -3.44 -1.95 0.07
(2.00) (-0.48) (-1.61) (0.65) (1.72)
Win rate (%) N/A 53.90%  44.36%  28.77%  50.96%
N/A (57.05%)  (51.87%) (55.24%)  (59.84%)
Maximum Drawdown (%) 29.97% 16.42% 62.07% 20.72% 18.76%
(69.53%)  (53.42%)  (70.66%) (37.16%) (38.65%)
Time in market (%) 100% 4.30% 17.97% 2.15% 5.37%
100% (12.90%)  (17.75%) (7.76%)  (12.76%)
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Figure 3: RF feature importance scores for 15-minute strategy with no transaction fee
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Note: feature definitions can be found at https://github.com/twopirllc/pandas-ta/blob/main/README.md
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Figure 4: RF feature importance scores for 15-minute strategy with 0.1% transaction fee
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Note: feature definitions can be found at https://github.com/twopirllc/pandas-ta/blob/main/README.md
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